Диагностирование и техническое обслуживание электрооборудования. Диагностирование электрооборудования автомобиля Выполнение работ по диагностике приборов электрооборудования

Общие сведения . При проведении номерных и ежесменных работ по техническому обслуживанию выполняют строго определенный перечень операции, указанный ниже.

Ежесменное техническое обслуживание . Оно заключается в проверке работоспособности приборов освещения и сигнализации (контроль ближнего и дальнего света фар, работы подфарников, указателей поворота, стоп-сигнала, стеклоочистителей).

Первое техническое обслуживание . Во время ТО-1 дополнительно к операциям ЕТО проверяют уровень электролита в батарее аккумуляторов и при необходимости доливают дистиллированную воду, очищают поверхность аккумулятора, проводят зачистку и смазку клемм и наконечников проводов.

Второе техническое обслуживание . При ТО-2 дополнительно к операциям ЕТО и ТО-1 контролируют плотность электролита в батарее аккумуляторов и при необходимости подзаряжают ее; прочищают дренажные и вентиляционные отверстия генератора; проверяют и подтягивают клеммовые соединения и крепления агрегатов и приборов электрооборудования.

Третье техническое обслуживание . Во время ТО-3 дополнительно контролируют и при необходимости регулируют реле-регулятор, состояние стартера и устраняют его неисправности, проверяют показания контрольных приборов, состояние изоляции электропроводки. При обнаружении неисправностей генератора, стартера, реле-регулятора или контрольных приборов рекомендуется их снять и проверить на специальном стенде, устранить неисправности и отрегулировать.

Таблица 18: Плотность электролита

Для проверки приборов электрооборудования применяют переносной вольтамперметр КИ-1093. Может быть использован также комбинированный прибор, например 43102, с помощью которого определяют силу тока, напряжение и сопротивление в цепях постоянного и переменного тока, угол замкнутого состояния контактов прерывателя и частоту вращения коленчатого вала, также пригодится гарнитура Гидро-Вектор . Аккумуляторную батарею проверяют нагрузочной вилкой ЛЭ-2, плотность электролита контролируют с помощью денсиметра (ГОСТ 18481-81) или плотномера КИ-13951.

Проверка и обслуживание аккумуляторной батареи . Батарею очищают от пыли и грязи, протирают поверхность и смотрят, нет ли трещин на банке и мастике. Зачищают клеммы и клеммовые провода.

Уровень электролита контролируют стеклянной трубкой, он должен быть на высоте 10 … 15 мм (но не выше 15 мм) над поверхностью защитной решетки. Если уровень ниже решетки, необходимо долить дистиллированную воду.

Проверяют плотность электролита, которая должна соответствовать техническим требованиям (табл. 18). Допускается снижение емкости зимой на 25%, летом - на 50%. Разница в плотности электролита между аккумуляторами одной батареи может быть не более 0,02 г/см3. Если плотность электролита ниже допускаемого значения, батарею необходимо подзарядить.

Проверка генераторов и реле-регуляторов . Наиболее часто встречаются следующие неисправности генераторов: замыкание обмоток на массу, межвитковое замыкание и обрыв в цепи, а также механические износы подшипников, разрушение обмотки якоря, износ щеток и пластин коллектора (у генераторов постоянного тока).

При проверке генераторов непосредственно на машине с помощью прибора КИ-1093 их подсоединяют по схеме, указанной на рисунке 18.

Генераторы переменного тока . Их проверяют (рис. 18, а) под нагрузкой, которую задают с помощью реостата прибора КИ-1093. Ток нагрузки должен быть 70 А для генераторов типа Г287 и 23,5 А для генераторов типа Г306. При указанной^ нагрузке измеряют напряжение на номинальной частоте вращения коленчатого вала двигателя. Оно должно быть в пределах 12,5 … 13,2 В.

Контактно-транзисторный реле-регулятор . Для проверки РР385-Б задают ток нагрузки 20 А и дополнительно включают все приборы освещения. При номинальной частоте вращения коленчатого вала напряжение должно быть 13,5 … 14,3 В летом и 14,3 … 15,5 В зимой. Регулятор РР362-Б проверяют при токе нагрузки 13 … 15 А, напряжение должно быть 13,2 … 14 В летом и 14 … 15,2 В зимой.

Генераторы постоянного тока . Их контролируют (рис. 18, б) при работе в режиме электродвигателя. Для этого снимают приводной ремень и включают генератор с помощью включателя массы на 3 … 5 мин. Потребляемый ток должен быть не более 6 А, и якорь вращается равномерно.

Вибрационный реле-регулятор . Проверку начинают с контроля реле напряжения. Схема проверки показана на рисунке 19, а. Двигатель должен работать на средней частоте вращения коленчатого вала. Нагрузочным реостатом прибора создают ток нагрузки 6 … 7 А и измеряют напряжение. Оно должно быть 13,7 … 14 В для позиции «Лето» и 14,2 … 14,5 В для позиции «Зима».

Для проверки ограничителя тока при средней частоте вращения коленчатого вала увеличивают реостатом ток нагрузки до тех пор, пока не остановится стрелка амперметра. Показания амперметра при этом соответствуют току, ограничиваемому реле. Максимальный ток должен быть 12 … 14 А для реле РР315-Б и 14 … 16 А для РР315-Д.

Реле обратного тока . Его проверяют в соответствии со схемой (рис. 19, б). Устанавливают минимальную частоту вращения коленчатого вала двигателя так, чтобы стрелка амперметра была в нулевом положении, затем повышают частоту вращения. В момент включения реле обратного тока резко уменьшаются показания вольтметра. Напряжение, предшествующее скачку стрелки вольтметра, соответствует напряжению включения реле обратного тока. Оно должно быть 11 … 12 В.

Для проверки обратного тока необходимо составить схему включения в соответствии с рисунком 19, в. Прибор подключают к аккумуляторной батарее. Устанавливают номинальную частоту вращения коленчатого вала двигателя и затем медлённо понижают ее. Стрелка амперметра перейдет нулевое положение и будет показывать отрицательный ток. Необходимо зафиксировать максимальное отрицательное отклонение стрелки, которое и соответствует обратному току в момент отключения аккумуляторной батареи от генератора. Значение обратного тока должно быть 0,5 … 6 А.

Регулирование всех приборов и агрегатов системы электрооборудования рекомендуется выполнять на специальных стендах.

Проверка и обслуживание приборов системы зажигания . Анализ надежности карбюраторных автомобильных двигателей показывает, что 25 … 30% их отказов происходит из-за неисправностей в системе зажигания. Наиболее частые признаки неисправной работы приборов системы зажигания: работа двигателя с перебоями, ухудшение приемистости при переходе с малой на среднюю частоту вращения, детонационные стуки, снижение мощности, полное отсутствие искрообразования, трудный пуск двигателя. Необходимо отметить, что примерно те же признаки (за исключением отсутствия искрообразования) возникают при неисправной работе системы питания.

Поиск неисправности в системе зажигания необходимо начинать с проверки искровых свечей зажигания. При перебоях в работе двигателя неработающий цилиндр определяют отключением свечи (замыканием провода на массу) на малой частоте вращения. Определив неработающий цилиндр, заменяют свечу на заведомо исправную, чтобы убедиться в ее исправности.

После проверки искровых свечей зажигания контролируют состояние прерывателя. Наиболее частые дефекты - окисление, износ, нарушение зазора контактов прерывателя и замыкание подвижного контакта на массу. Причиной перебоев в работе двигателя может быть также неисправность конденсатора. Конденсатор влияет на интенсивность искрообразования и окисление контактов прерывателя.

Приемистость двигателя ухудшается из-за нарушения работы центробежного и вакуумного автоматов опережения зажигания и неправильной начальной установки угла опережения зажигания. Раннее зажигание также может стать причиной детонационных стуков и трудного запуска двигателя, позднее зажигание приводит к ухудшению приемистости и заметному снижению мощности.

Отсутствие искрообразования происходит из-за разрывов в цепях низкого или высокого напряжения, замыкания на массу подвижного контакта прерывателя и неисправностей индукционной катушки (при условии, что есть напряжение на клеммах первичной обмотки катушки).

Приборы зажигания проверяют с помощью вольтамперметра КИ-1093, комбинированных приборов 43102, Ц4328, К301, Э214, Э213. На станциях диагностики применяют мотор-тестер КИ-5524.

Искровые свечи зажигания . При техническом обслуживании свечи очищают от нагара и регулируют зазор между электродами.

Прерыватель-распределитель . В нем зачищают контакты прерывателя, регулируют зазор между ними (контролируют по углу замкнутого состояния контактов), зачищают торец токопроводящей пластины ротора и контакты в крышке распределителя, смазывают точки смазки. Проверяют угол опережения зажигания и при необходимости регулируют его.

Контактно-транзисторная система зажигания . Вследствие малого тока, проходящего через контакты прерывателя, отсутствует искрение между ними, они почти не подвергаются эрозии и окислению. При техническом обслуживании протирают контакты прерывателя тканью, смоченной в бензине, проверяют и регулируют зазор между ними, смазывают фильц кулачка. При отказе транзисторного коммутатора его заменяют.

Проверка и обслуживание стартера . Неисправности стартера - обрывы и короткие замыкания в цепи, плохой контакт, обгорание или выработка коллектора, загрязнение или износ щеток, обрыв или короткое замыкание в обмотках тягового реле и реле включения, износ муфты свободного хода, заклинивание или поломка зубьев шестерен. В случае этих неисправностей во время включения стартера коленчатый вал не вращается или же проворачивается незначительно с шумом и стуками, не обеспечивая пуск двигателя.

Во время ТО подтягивают крепление контактов внешней цепи, очищают их от загрязнений, зачищают контакты включения стартера, подтягивают крепления. Неисправный стартер проверяют на контрольно-испытательном стенде Э211 и 532М.

Приборы освещения . Неисправность фар обычно заключается в нарушении их положения, отчего зависит направленность светового потока. Освещение дороги должно быть на расстоянии 30 м при ближнем свете и 100 м при дальнем. При ТО регулируют фары с помощью специальных оптических приборов, настенного или переносного экрана. Применяют прибор К-303 для контроля и регулировки положения фар.

При проверке с помощью экрана машину устанавливают перед ним на горизонтальной площадке в определенном расстоянии и регулируют положение фар так, чтобы высота горизонтальной оси обоих пятен света и расстояние между их вертикальными осями соответствовало техническим требованиям.

Методы диагностирования электрооборудования

Мониторинг и диагностика ВЛ

1.3.1 Общие сведения

Надежность обеспечения электроэнергией, то есть электроснабжения большого количества распределœенных по всœей стране потребителœей энергией, в основном определяется состоянием ВЛ. По этой причине вопросам мониторинга и диагностики ВЛ уделяется пристальное внимание, особенно в последнее время, когда уровень технологии обеспечил надежную связь многочисленных датчиков и устройств, обменивающихся цифровыми данными.

Мониторинг в приложении к технике - ϶ᴛᴏ реализованный с помощью цифрового оборудования процесс дискретного автоматического сбора, передачи, хранения и анализа мгновенных данных о параметрах, изменяющихся во времени и характеризующих состояние объекта управления и/или контроля. Дискретность или частота сбора информации о параметрах определяется видом и состоянием объекта. В процессе мониторинга дискретность может изменяться, в случае если это предусмотрено алгоритмом работы. Мониторинг осуществляется на работающем объекте под напряжением. Объектом контроля в данном случае является ВЛ.

Задачи мониторинга:

Обеспечение подразделœений, принимающих решение, достоверной оперативной информацией;

Информирование о нештатных ситуациях на ВЛ (обледенение, обрыв проводов, возникновение КЗ);

Оценка текущего технического состояния объекта;

Мгновенное обнаружение неисправностей и указание точного места их расположения (к примеру, номер опоры);

Решение других информационных и аналитических задач (характер нагрузки, симметрия фаз и пр.).

Из решаемых задач видно, что мониторинг является составной частью автоматизированной системы управления объектом, в которой окончательное решение принимает человек.

Все виды осмотров (пешие, конные, на автомобилях, вертолетах, самолетах, из космоса) по решаемым задачам являются не компьютерной эпизодической формой мониторинга. Осмотры останутся незаменимыми для решения многих задач, к примеру, определœение состояния фундаментов опор и оттяжек, проверка качества заземлений, диагностика состояния опор, качества соединœения проводов и тросов и т.д. То есть до тех пор, пока не появятся дешевые надежные датчики, учитывающие изменение параметров, необходимых для решения перечисленных задач.

Техническая диагностика - ϶ᴛᴏ оценка технического состояния объекта͵ начинающаяся с определœения места и характера имеющихся проблемных элементов и заканчивающаяся переходом объекта в неработоспособное состояние. Диагностика осуществляется на базе использования современных методов и средств и решает задачу обеспечения безопасности, функциональной надёжности и эффективности работы технического объекта͵ а также сокращения затрат на его техническое обслуживание и уменьшения потерь от простоев в результате отказов.

Диагностическое обследование выполняется на отключенном оборудовании . При помощи систем диагностического мониторинга решается задача эффективного управления эксплуатацией и ремонтом оборудования.

Трудно найти физическое явление или процесс, которые не использовались бы для целœей диагностики. Рассмотрим некоторые из них, нашедшие широкое применение в электроэнергетике.

Физико-химические методы . Энергетическое воздействие на изоляцию электрических устройств приводит к ее изменениям на молекулярном уровне. Это происходит вне зависимости от типа изоляции и завершается химическими реакциями с образованием новых химических соединœений, причем под действием электромагнитного поля, температуры, вибрации одновременно идут процессы разложения и синтеза. Анализируя количество и состав появляющихся новых химических соединœений можно делать выводы о состоянии всœех элементов изоляции. Наиболее просто это сделать с жидкой углеводородной изоляцией, каковой являются минœеральные масла, так как всœе или почти всœе образовавшиеся новые химические соединœения остаются в замкнутом объёме.

Преимуществом физико-химических методов диагностического контроля является их высокая точность и независимость от электрических, магнитных и электромагнитных полей и от других энергетических воздействий, так как всœе исследования проводятся в физико-химических лабораториях. Недостатками этих методов является относительная дороговизна, и запаздывание от текущего времени, то есть неоперативный контроль.

Метод хроматографического контроля маслонаполненного оборудования. Этот метод основан на хроматографическом анализе различных газов, выделяющихся из масла и изоляции при дефектах внутри маслонаполненного электрооборудования. Алгоритмы определœения дефектов, на ранней стадии их возникновения, основанные на анализе состава и концентрации газов, являются распространенными, хорошо проработанными для диагностики маслонаполненного электрооборудования и описаны в .

Оценка состояния маслонаполненного оборудования осуществляется на базе контроля:

Предельных концентраций газов;

Скорости нарастания концентраций газов;

Отношений концентраций газов.

Метод контроля диэлектрических характеристик изоляции. Метод основан на измерении диэлектрических характеристик, к которым относятся токи утечки, величины емкости, тангенс угла диэлектрических потерь (tg δ ) и др.
Размещено на реф.рф
Абсолютные значения tgd, измеренные при напряжениях, близких к рабочему, а также его приращения при изменении испытательного напряжения, частоты и температуры, характеризуют качество и степень старения изоляции.

Для измерения tgd и емкости изоляции используются мосты переменного тока (мосты Шеринга). Метод используется для контроля высоковольтных измерительных трансформаторов и конденсаторов связи.

Метод инфракрасной термографии. Потери электрической энергии на нагрев элементов и узлов электрооборудования в процессе эксплуатации зависят от их технического состояния. Измеряя инфракрасное излучение, обусловленное нагревом, можно делать выводы о техническом состоянии электрооборудования. Невидимое инфракрасное излучение с помощью тепловизоров преобразуется в видимый человеком сигнал. Данный метод дистанционный, чувствительный, позволяющий регистрировать изменения температуры в доли градуса. По этой причине его показания сильно подвержены влияющим факторам, к примеру, отражающей способности объекта измерения, температуре и состоянию окружающей среды, так как запыленность и влажность поглощают инфракрасное излучение, и др.

Оценка технического состояния элементов и узлов электрооборудования под нагрузкой производится либо сопоставлением температуры однотипных элементов и узлов (их излучение должно быть примерно одинаковым), либо по превышению допустимой температуры для данного элемента или узла. В последнем случае тепловизоры должны иметь встроенное оборудование для коррекции влияния температуры и параметров окружающей среды на результат измерения.

Метод вибродиагностики. Для контроля над техническим состоянием механических узлов электрооборудования используют связь параметров объекта (его массы и жесткости конструкции) со спектром частот собственной и вынужденной вибрации. Всякое изменение параметров объекта в процессе эксплуатации, в частности жесткости конструкции вследствие ее усталости и старения, вызывает изменение спектра. Чувствительность метода увеличивается с ростом информативных частот. Оценка состояния по смещению низкочастотных составляющих спектра менее эффективна.

Методы контроля частичных разрядов в изоляции. Процессы возникновения и развития дефектов изоляторов ВЛ, независимо от их материала, сопровождаются появлением электрических или частичных разрядов, которые, в свою очередь, порождают электромагнитные (в радио и оптическом диапазонах) и звуковые волны. Интенсивность проявления разрядов зависит от температуры и влажности атмосферного воздуха и связана с наличием атмосферных осадков. Такая зависимость получаемой диагностической информации от атмосферных условий требует совмещать процедуру диагностирования интенсивности разрядов в подвесной изоляции ЛЭП с крайне важно стью обязательного контроля температуры и влажности окружающей среды.

Для контроля широко применяются всœе виды и диапазоны излучения. Метод акустической эмиссии работает в звуковом диапазоне. Известен метод контроля оптического излучения ПР с помощью электронно-оптического дефектоскопа. Он основан на регистрации пространственно временного распределœения яркости свечения и определœении по ее характеру дефектных изоляторов. Для этих же целœей с разной эффективностью применяют радиотехнический и ультразвуковой методы, а также метод контроля ультрафиолетового излучения с помощью электронно-оптического дефектоскопа ʼʼФилинʼʼ.

Метод ультразвукового зондирования. Скорость распространения ультразвука в облучаемом объекте зависит от его состояния (наличия дефектов, трещин, коррозии). Это свойство используется для диагностики состояния бетона, древесины и металла, которые широко применяются в энергохозяйстве, к примеру, в качестве материала опор.

Методы диагностирования электрооборудования - понятие и виды. Классификация и особенности категории "Методы диагностирования электрооборудования" 2017, 2018.

Исходя из задач и принципов организации работ, при диагностировании электрооборудования применяются приборы и устройства. Классификация средств, применяемых при диагностировании электрооборудования, показана на рис. 1. В настоящее время диагностирование и прогнозирование электрооборудования обычно проводится с помощью переносных приборов ручного управления.

Рис. 1. Классификация средств, применяемых при диагностировании электрооборудования

Довольно широкое применение получат устройства для диагностирования электрооборудования, которые могут осуществлять постоянный или периодический автоматический контроль за техническим состоянием и сигнализировать о наступлении предаварийного состояния. Такие устройства не позволяют автоматике или вручную включать и отключать электрооборудование из сети при угрозе возникновения ^неисправностей. Перспективы широкого применения устройств для диагностирования объясняются тем, что электрооборудованием, в отличие от других машин и механизмов, сравнительно легко можно управлять благодаря наличию аппаратуры управления и схем автоматизации его работы. Естественно, что автоматические диагностические устройства в первую очередь целесообразно устанавливать для контроля за электрооборудованием, отказы которого приводят к большому ущербу, а также за электрооборудованием, доступ к которому затруднен или невозможен. Следует отметить, что одно устройство может контролировать группу электрооборудования, например, электродвигатели одной поточной технологической линии.

На последующих этапах разработки средств и внедрения диагностирования, как составного элемента новой формы системы ППР, предвидится естественный процесс перехода к созданию диагностических систем, в которых большинство операций проводится полуавтоматически и автоматически. Как правило, диагностической системой автоматически выдается результат диагноза и прогноза.

Средства для диагностирования по принципу воздействия на объект диагностирования разделяются на две группы: тестовую и функциональную. С помощью средств тестовой группы при диагностировании в контролируемое электрооборудование посылаются сигналы (тестовые воздействия), при этом измеряют необходимые параметры, характеризующие реакцию электрооборудования на сигналы, и по этим параметрам оценивается его техническое состояние. Средствами диагностирования функциональной группы определяется техническое состояние электрооборудования во время работы, причем никаких внешних воздействий, отражающихся на функционировании электрооборудования, не производится.

При разработке средств в 1-ю очередь проводится классификация диагностических параметров, с помощью которых определяется техническое состояние электрооборудования, а также устанавливаются пределы изменения этих параметров.

В случае, если величину диагностического параметра нельзя определить прямым измерением, проводят выбор или разработку преобразователей или датчиков. В зависимости от характера диагностических параметров определяется, к какой группе будет относиться средство диагностирования (тестовой или функциональной).

При разработке диагностических средств стремятся создать конструкции и схемы, обеспечивающие минимальную трудоемкость и стоимость диагностирования, а также заданную точность измерения. Большое значение при разработке средств для диагностирования электрооборудования имеет форма представления результатов, которая должна быть удобной для анализа и прогнозирования.

На 1-м этапе создания средств для диагностирования обычно преобладает считывание показаний по приборам, цифровым индикаторам, световая и звуковая сигнализация. При этом считывание показаний по приборам и цифровым индикаторам в большинстве случаев присуще диагностированию с помощью переносных приборов, а световая или звуковая индикация - полуавтоматическим и автоматическим устройствам контроля технического состояния, устанавливаемым около контролируемого электрооборудования. В дальнейшем по мере совершенствования средств диагностирования, по-видимому, будет наблюдаться переход к форме представления результатов диагностирования в виде записи (аналоговой или цифровой). При разработке диагностических средств одним из важных ключевых показателей является учет области применения, т. е. соответствие разрабатываемого прибора, устройства или системы основным положениям организации диагностирования электрооборудования.

Опыт разработки и внедрения диагностирования в практику эксплуатации электрооборудования показывает, что средства диагностирования целесообразно разделить по следующему принципу:

  1. Простые средства для диагностирования по ограниченному числу обобщенных диагностических параметров, позволяющих определять общее техническое состояние электрооборудования. Эти средства предназначаются для определения технического состояния электрооборудования при техническом обслуживании, а также для обнаружения простейших неисправностей. К таким средствам относятся простые переносные приборы.

  2. Средства для проведения полного диагностирования и прогнозирования, позволяющие определять техническое состояние всех элементов, ограничивающих ресурс работы или работоспособность электрооборудования. Эти средства предназначены для проведения планового диагностирования и поиска неисправностей электрооборудования.

  3. Средства для проведения доремонтного и послеремонтного диагностирования, предназначенные для применения в специализированных электроремонтных предприятиях или участках с целью определения номенклатуры подлежащих ремонту узлов и деталей и качества ремонта электрооборудования по параметрам, характеризующим послеремонтный ресурс.

В зависимости от назначения средства для диагностирования могут разрабатываться переносными, передвижными и стационарными. Важным показателем средств для диагностирования является степень их автоматизации. Условно средства для диагностирования разделяют на автоматизированные, автоматические и ручного управления.

На 1-х этапах разработки проводят расчеты по оптимальному выбору диагностических средств, т. е. по определению типа, параметров, характера решаемых задач и др. При этом учитываются требования, предъявляемые к средствам диагностирования организацией эксплуатации электрооборудования, а также достоверность результатов диагностирования. Одним из основных требований является назначение разрабатываемого средства (для определения работоспособности; определения работоспособности и ресурса; определения работоспособности, ресурса и поиска неисправностей; определения ресурса; поиска неисправностей и др.).

Оптимальный выбор диагностических средств должен обеспечивать минимальную стоимость проверки элементов, минимум издержек от погрешности проверки элементов, а также максимальную экономическую эффективность применения средств. Экономическую эффективность применения средств диагностирования рассчитывают в соответствии с методикой определения эффективности использования в народном хозяйстве новой техники. Следует отметить, что экономическая эффективность применения разрабатываемого средства тем выше, чем большее количество электрооборудования можно продиагностировать с его помощью, т. е. чем выше его производительность. После получения положительного результата при проверочном расчете экономической эффективности (целесообразности) создания конкретного средства для диагностирования, составляют принципиальные кинематические и электрические схемы, а также рассчитывают параметры деталей и узлов. Затем создается макетный или экспериментальный образец, который проходит вначале лабораторные, а затем производственные испытания. При испытаниях устанавливают соответствие разрабатываемого средства своему целевому назначению и его работоспособность; определяют погрешности и трудоемкости измерения диагностических параметров. По результатам испытаний вносят необходимые коррективы в схему и конструкцию средства и разрабатывают опытный образец. Опытный образец после заводских и производственных испытаний и соответствующей доработки по их результатам представляется ведомственной или межведомственной государственной комиссии, которая рекомендует его к серийному производству.

В качестве инструментов определения неисправностей изделий, узлов, деталей или сопряжений используется специальное диагностическое оборудование или простые приспособления в виде контрольной лампы, дополнительного зуммера, вольтметра, амперметра, омметра или мультиметра. Поэтому очень важно знать типовые алгоритмы технологии поиска обрывов, коротких замыканий и других неисправностей в процессе транспортных работ или вдали от сервисной станции. Рассмотрим эти процедуры по системам электрооборудования.

Система электроснабжения. Если электрическая схема генераторной установки соответствует схеме изображенной на рис. 9.2, а , когда один конец обмотки возбуждения соединен с корпусом генератора, то алгоритм поиска неисправностей состоит в следующем.

Цепь зарядки АКБ проверяют путем подключения одного вывода контрольной лампы к выводу «+» генератора, а другого - к «массе». Под контрольной лампой понимают самостоятельно изготовленное устройство - патрон с лам

Рис. 9.2.

1 - генератор; 2 - обмотка возбуждения; 3 - обмотка статора; 4 - выпрямитель; 5 - выключатель зажигания; 6 - реле контрольной лампы; 7 - регулятор напряжения; 8- контрольная лампа; 9 - трансформаторно-выпрямительный блок; 10- помехоподавительный конденсатор; 11 - аккумуляторная батарея

пой, в котором «минусовой» вывод выполнен в виде зажима типа «крокодил», а другой, «плюсовой», - в виде щупа. Лампу мощностью 15...25 Вт можно менять в зависимости от напряжения бортовой сети. Если контрольная лампа загорается, то можно констатировать, что цепь зарядки АКБ исправна.

Цепь возбуждения проверяют, подключив «плюсовой» вывод контрольной лампы к выводу «+» или В регулятора напряжения, а затем к выводу Ш генератора. «Минусовой» вывод контрольной лампы присоединяют к «массе». Выключатель зажигания включен. Контрольная лампа должна гореть. Если исправность цепи возбуждения таким образом не подтверждается, то при работающем на средних частотах вращения коленчатого вала двигателе соединяют дополнительным проводником выводы «+» или В регулятора с выводом Ш генератора. При появлении зарядного тока неисправен регулятор напряжения, в противном случае - генератор.

Если электрическая схема генераторной установки соответствует схеме рис. 9.2, в или 9.2, д, когда обмотка возбуждения подсоединена к «массе» через регулятор напряжения, то исправность цепи возбуждения проверяют последовательным подключением «плюсового» вывода контрольной лампы к выводу «+», а затем к выводу Ш регулятора напряжения. Другой конец контрольной лампы подсоединяется к «массе». Если контрольная лампа не горит только во время подключения к выводу Ш регулятора, то в цепи возбуждения имеется обрыв.

При отсутствии обрыва в цепи возбуждения проверяют исправность генератора на средней частоте вращения коленчатого вала двигателя. Для этого дополнительным проводником соединяют вывод Ш регулятора напряжения с «массой». Если зарядный ток появляется, значит, неисправен регулятор, а если отсутствует, неисправен генератор.

Если при полностью заряженной АКБ амперметр А (см. рис. 9.2, а) показывает зарядный ток 8... 10 А в течение длительного времени, а вольтметр - повышенное напряжение, то это свидетельствует о неисправности в цепи от вывода «+» генератора до вывода «+» или В регулятора напряжения. Причина этого - большие переходные сопротивления на контактах в этой цепи, когда используется регулятор напряжения выносной конструкции.

При колебаниях стрелки амперметра или вольтметра необходимо проверить надежность крепления проводов в местах подсоединения в схеме электроснабжения или усилия прижима щеток к контактным кольцам. Колебаться стрелки приборов могут и в случае многократного срабатывания термобиметаллических предохранителей вследствие коротких замыканий в цепях. У амперметра колебания стрелки выходят за пределы шкалы прибора.

Система пуска. Поиск неисправностей в электропусковой системе осуществляют поэтапно, разделив систему на отдельные элементы: аккумуляторная батарея; силовая цепь, включающая соединительные провода от «+» АКБ до «+» стартера и от «-» АКБ до корпуса автомобиля; стартер, цепи управления и коммутирующие изделия - реле блокировки стартера, дополнительное реле, выключатель зажигания, выключатель «массы» (рис. 9.3) .

Если при попытке запуска двигателя внутреннего сгорания нет характерного щелчка, сопровождающего включение тягового реле стартера, то поиск неисправности проводят по следующему алгоритму.

Соединяют дополнительным проводником выводы Б и С дополнительного реле. Если стартер включился, то с вывода С конец дополнительного провода переносят на вывод К. Если стартер не включился, то неисправно дополнительное реле.

Если при соединении выводов Б и С стартер не включился, то измеряют вольтметром напряжение на выводе Б. Если это напряжение больше напряже-

Рис. 9.3.

1 - электростартер; 2 - выключатель зажигания; 3 - дополнительное реле;

К1 - контакты тягового реле стартера; М - якорь стартера; Б, С, К, 50 - клеммы стартера

и реле; 68 - аккумуляторная батарея

ния включения реле стартера, то соединяют выводы Б и 50. Включение стартера означает наличие обрыва между выводами С и 50. В противном случае неисправен стартер. Если на выводе Б напряжение меньше напряжения включения реле стартера, то последовательно проверяют напряжение на всех участках цепи от вывода Б до «+» АКБ. При отсутствии напряжения на выводе Б ищут обрыв цепи между выводом Б и «+» АКБ. Эту процедуру начинают с контроля АКБ, и если она исправна, то измеряют падение напряжения на стартере. Если падение напряжения более 3 В для 12-вольтового исполнения и более 6 В для 24-вольтово- го, значит, стартер неисправен.

Если при включении стартера тяговое реле циклически включается и выключается, то это происходит из-за сильной разряженности АКБ, разрегулирования дополнительного реле или обрыва удерживающей обмотки реле стартера.

Если при включении стартера слышен металлический скрежет или коленчатый вал не вращается, то неисправна муфта свободного хода (см. табл. 9.5) }

Понравилась статья? Поделиться с друзьями: