Унч на 2 транзисторах разной проводимости схема. Описание работы усилителя мощности звука на транзисторах MOSFET. Бестрансформаторный транзисторный усилитель мощности

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах - музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин - практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» - ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно - чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД - свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД - менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток - полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений - не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше - до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется - характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, - обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление - несколько тысяч Ом. Но сопротивление обмотки динамиков - 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток - существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная - в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий - порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности - они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная - с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм - наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 - 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h21 - 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения - это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле - сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 - 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое - обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, - с общим эмиттером. Одна особенность - необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.

Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина - повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог - например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток - 0,3-0,5 А.

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора - он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку - наушники.

Коснитесь входа усилителя пальцем - должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука - выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Сейчас в интернете можно найти огромное количество схем различных усилителей на микросхемах, преимущественно серии TDA. Они обладают достаточно неплохими характеристиками, хорошим КПД и стоят не так уж и дорого, в связи с этим и пользуются такой популярностью. Однако на их фоне незаслуженно остаются забытыми транзисторные усилители, которые хоть и сложны в настройке, но не менее интересны.

Схема усилителя

В этой статье рассмотрим процесс сборки весьма необычного усилителя, работающего в классе «А» и содержащего всего 4 транзистора. Эта схема разработана ещё в 1969 году английским инженером Джоном Линсли Худом, несмотря на свою старость, она и по сей день остаётся актуальной.

В отличие от усилителей на микросхемах, транзисторные усилители требуют тщательной настройки и подбора транзисторов. Эта схема – не исключение, хоть она и выглядит предельно простой. Транзистор VT1 – входной, структуры PNP. Можно экспериментировать с различными маломощными PNP-транзисторами, в том числе и с германиевыми, например, МП42. Хорошо себя зарекомендовали в этой схеме в качестве VT1 такие транзисторы, как 2N3906, BC212, BC546, КТ361. Транзистор VT2 – структуры NPN, средней или малой мощности, сюда подойдут КТ801, КТ630, КТ602, 2N697, BD139, 2SC5707, 2SD2165. Особое внимание стоит уделить выходным транзисторам VT3 и VT4, а точнее, их коэффициенту усиления. Сюда хорошо подходят КТ805, 2SC5200, 2N3055, 2SC5198. Нужно отобрать два одинаковых транзистора с как можно более близким коэффициентом усиления, при этом он должен более 120. Если коэффициент усиления выходных транзисторов меньше 120, значит в драйверный каскад (VT2) нужно поставить транзистор с большим усилением (300 и более).

Подбор номиналов усилителя

Некоторые номиналы на схеме подбираются исходя из напряжения питания схемы и сопротивления нагрузки, некоторые возможные варианты показаны в таблице:


Не рекомендуется поднимать напряжение питания более 40 вольт, могут выйти из строя выходные транзисторы. Особенность усилителей класса А – большой ток покоя, и, следовательно, сильный разогрев транзисторов. При напряжении питания, например, 20 вольт и токе покоя 1.5 ампера усилитель потребляет 30 ватт, не зависимо от того, подаётся на его вход сигнал или нет. На каждом из выходных транзисторов при этом будет рассеиваться по 15 ватт тепла, а это мощность небольшого паяльника! Поэтому транзисторы VT3 и VT4 нужно установить на большой радиатор, используя термопасту.
Данный усилитель склонен в появлению самовозбуждений, поэтому на его выходе ставят цепь Цобеля: резистор сопротивлением 10 Ом и конденсатор 100 нФ, включенные последовательно между землёй и общей точкой выходных транзисторов (на схеме эта цепь показана пунктиром).
При первом включении усилителя в разрыв его питающего провода нужно включить амперметр для контроля тока покоя. Пока выходные транзисторы не разогрелись до рабочей температуры, он может немного плавать, это вполне нормально. Также при первом включении нужно замерять напряжение между общей точкой выходных транзисторов (коллектор VT4 и эммитер VT3) и землёй, там должна быть половина питающего напряжения. Если напряжение отличается в большую или меньшую сторону, нужно покрутить подстроечный резистор R2.

Плата усилителя:

(cкачиваний: 523)


Плата изготовлена методом ЛУТ.

Собранный мной усилитель






Несколько слов о конденсаторах, входном и выходном. Ёмкость входного конденсатора на схеме обозначена 0,1 мкФ, однако такой ёмкости не достаточно. В качестве входного следует поставить плёночный конденсатор ёмкостью 0,68 – 1 мкФ, иначе возможен нежелательный срез низких частот. Выходной конденсатор С5 стоит взять на напряжение не меньшее, чем напряжением питания, жадничать с ёмкостью также не стоит.
Преимуществом схемы этого усилителя является то, что она не представляет опасности для динамиков акустической системы, ведь динамик подключается через разделительный конденсатор (С5), это значит, что при появлении на выходе постоянного напряжения, например, при выходе усилителя из строя, динамик останется цел, ведь конденсатор не пропустит постоянное напряжение.

Редакция сайта «Две Схемы» представляет простой, но качественный усилитель НЧ на транзисторах MOSFET. Его схема должна быть хорошо известна радиолюбителям аудиофилам, так как ей уже лет 20. Схема является разработкой знаменитого Энтони Холтона, поэтому её иногда так и называют — УНЧ Holton. Система усиления звука имеет низкие гармонические искажения, не превышающие 0,1%, при мощности на нагрузку порядка 100 Ватт.

Данный усилитель является альтернативой для популярных усилителей серии TDA и подобных попсовых, ведь при чуть большей стоимости можно получить усилитель с явно лучшими характеристиками.

Большим преимуществом системы является простая конструкция и выходной каскад, состоящий из 2-х недорогих МОП-транзисторов. Усилитель может работать с динамиками сопротивлением как 4, так и 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — будет установка значения тока покоя выходных транзисторов.

Принципиальная схема УМЗЧ Holton


Усилитель Холтон на MOSFET — схема

Схема является классическим двухступенчатым усилителем, он состоит из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает одна пара силовых транзисторов. Схема системы представлена выше.

Печатная плата


Печатная плата УНЧ — готовый вид

Вот архив с PDF файлами печатной платы — .

Принцип работы усилителя

Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.

Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).

Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.

Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.

Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.

Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.

Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.

На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).


Самодельный транзисторный УНЧ на МОСФЕТ

Управление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).

Источник питания для УМЗЧ

Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.


Усилитель Холтон на плате с деталями

Рекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе .

Схема № 2

Схема второго нашего усилителя значительно сложнее, но зато позволяет получить и более качественной звучание. Достигнуто это за счет более совершенной схемотехники, большего коэффициента усиления усилителя (и, следовательно, более глубокой обратной связи), а также возможностью регулировать начальное смещение транзисторов выходного каскада.

Схема нового варианта усилителя приведена на рис. 11.20. Этот усилитель, в отличие от своего предшественника, питается от двухполярного источника напряжения.

Входной каскад усилителя на транзисторах VT1-VT3 образует т. н. дифференциальный усилитель. Транзистор VT2 в дифференциальном усилителе является источником тока (довольно часто в дифференциальных усилителях в качестве источника тока ставят обычный резистор достаточно большого номинала). А транзисторы VT1 и VT3 образуют два пути, по которым ток из источника уходит в нагрузку.

Если ток в цепи одного транзистора увеличится, то ток в цепи другого транзистора уменьшится на точно такую же величину - источник тока поддерживает сумму токов обоих транзисторов постоянной.

В итоге транзисторы дифференциального усилителя образуют почти «идеальное» устройство сравнения, что важно для качественной работы обратной связи. На базу одного транзистора подается усиливаемый сигнал, на базу другого - сигнал обратной связи через делитель напряжения на резисторах R6, R8.

Противофазный сигнал «расхождения» выделяется на резисторах R4 и R5, и поступает на две цепочки усиления:

  • транзистор VT7;
  • транзисторы VT4-VT6.

Когда сигнал рассогласования отсутствует, токи обоих цепочек, т. е. транзисторов VT7 и VT6, равны, и напряжение в точке соединения их коллекторов (в нашей схеме такой точкой можно считать транзистор VT8) в точности равно нулю.

При появлении сигнала рассогласования токи транзисторов становятся разными, и напряжение в точке соединения становится больше или меньше нуля. Это напряжение усиливается составным эмиттерным повторителем, собранным на комплементарных парах VT9, VT10 и VT11, VT12, и поступает на АС - это выходной сигнал усилителя.

Транзистор VT8 используется для регулировки т. н. тока «покоя» выходного каскада. Когда движок подстроечного резистора R14 находится в верхнем по схеме положении, транзистор VT8 полностью открыт. При этом падение напряжение на нем близко к нулю. Если же перемещать движок резистора в нижнее положение, падение напряжения на транзисторе VT8 будет увеличиваться. А это равносильно внесению сигнала смещения в базы транзисторов выходного эмиттерного повторителя. Происходит смещение режима их работы от класса С до класса В, а в принципе - и до класса А. Это, как мы уже знаем, один из способов улучшения качества звука - не следует полагаться в этом только на действие обратной связи.

Плата . Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 50×47.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать . Работу усилителя смотрим на . Внешний вид усилителя приведен на рис. 11.21.

Аналоги и элементная база . При отсутствии необходимых деталей транзисторы VT1, VT3 можно заменить любыми малошумящими с допустимым током не менее 100 мА, допустимым напряжением не ниже напряжения питания усилителя и как можно большим коэффициентом усиления.

Специально для таких схем промышленностью выпускаются транзисторные сборки, представляющие собой пару транзисторов в одном корпусе с максимально подобными характеристиками - это был бы идеальный вариант.

Транзисторы VT9 и VT10 обязательно должны быть комплементарными, также как и VT11, и VT12. Они должны быть рассчитаны на напряжение не менее удвоенного напряжения питания усилителя. Не забыли, уважаемый радиолюбитель, что усилитель питается от двухполярного источника напряжения?

Для зарубежных аналогов комплементарые пары обычно указываются в документации на транзистор, для отечественных приборов - придется попотеть в Инете! Транзисторы выходного каскада VT11, VT12 дополнительно должны выдерживать ток, не меньший:

I в = U / R, А,

U - напряжение питания усилителя,
R - сопротивление АС.

Для транзисторов VT9, VT10 допустимый ток должен быть не менее:

I п = I в / B, А ,

I в - максимальный ток выходных транзисторов;
B - коэффициент усиления выходных транзисторов.

Обратите внимание, что в документации на мощные транзисторы иногда приводятся два коэффициента усиления - один для режима усиления «малого сигнала», другой - для схемы с ОЭ. Вам нужен для расчета не тот, который для «малого сигнала». Обратите внимание также на особенность транзисторов КТ972/КТ973 - их коэффициент усиления составляет более 750.

Найденный вами аналог должен обладать не меньшим коэффициентом усиления - это существенно для данной схемы. Остальные транзисторы должны иметь допустимое напряжение не менее удвоенного напряжения питания усилителя и допустимый ток не мене 100 мА. Резисторы - любые с допустимой рассеиваемой мощностью не менее 0.125 Вт. Конденсаторы - электролитические, с емкостью не менее указанной и рабочим напряжением не менее напряжения питания усилителя.

Продолжение читайте

Понравилась статья? Поделиться с друзьями: