Происхождение во вселенной золота и других тяжелых элементов. Происхождение химических элементов во вселенной В результате каких процессов формируются химические элементы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Возникновение химических элементов

1. Возникновение Вселенной

Большинство космологов полагает, что Вселенная возникла как плотный сгусток вещества и энергии, который начал расширяться примерно 18 млрд. лет тому назад. Образование элементов уходит своими корнями к Большому взрыву. Возникновение элементов в результате Большого взрыва впервые было обосновано Гамовым в 1946 г. (Gamov, 1946).

По Гамову на ранних этапах образования Вселенной температуры и давления были экстремально высокими, при этом протоны, нейтроны, электроны и нейтрино находились в равновесии. Когда Вселенная начала расширяться, температура упала, и состояние равновесия нарушилось. Гамов полагал, что последовательное повторение процессов -распада и захвата нейтронов привело к образованию тяжелых элементов. Потребовалось всего около 20 мин. для возникновения всех ныне существующих элементов, но в настоящее время полагают, что во время Большого взрыва образовались легкие элементы, которые затем посредством ядерных реакций внутри звезд дали начало элементам с атомным номером 6 и выше (Озима, 1990).

Исходно, большая часть материи существовала в виде энергии. Вещество начало оформляться по мере остывания. Общая картина возникновения элементов может быть выражена следующей схемой.

«Горение» водорода. В процессе ядерного синтеза атомы водорода сливаются вместе, образуя атом гелия и высвобождая энергию. Масса частиц, из которых состоит гелий, составляет: 2 протона (по 1,0076) и 2 нейтрона (по 1,0089) = 2 1,0076+2 1,0089 = 4,033. Ядро атома гелия имеет массу 4,0028. Уменьшение в 0,0302 единицы массы называется дефектом массы, который в соответствии с уравнением Эйнштейна E = mc2 эквивалентен 4,512 Дж атом-1. Этот процесс требует температуры 107 - 108 K:

«Горение» гелия происходит при температуре > 108 K и давлении 105 г см2.

2. Образование звезд

Водород и другие легкие элементы рассеялись во вселенной и, сгруппировавшись, образовали звезды. Под действием собственной силы тяжести звезды начали постепенно сжиматься, что приводило к повышению температуры. Когда температура в центре каждой из звезд достигла нескольких миллионов градусов, атомы водорода объединились и образовали атомы гелия, т.е. произошла реакция «горения» ядер. Затем возникли атомы C и других тяжелых элементов.

Таким образом, элементарный состав Вселенной определяется ядерными процессами в звездах. Так, температура 108 K возможна внутри звезды с массой равной массе нашего солнца. Внутри солнца постоянно идет процесс ядерных превращений:

Рис. 1. Схематическое изображение нашего солнца

Видно, что эти реакции можно представить в виде автокаталитического цикла, известного как углеродный цикл Бете - фон Вайцзекера (рис. 2).

Размещено на http :// www . allbest . ru /

Рис. 2. Углеродный цикл Бете - фон Вайцзекера

В звездах с большими массами температуры выше и там идут процессы синтеза более тяжелых элементов. В звездах тяжелее солнца вдвое (рис. 3):

Рис. 3. Звезды вдвое (а), втрое (б) тяжелее Солнца и звезда перед взрывом сверхновой (в).

Звезды с массой 20 солнечных масс (рис. 3) способны к синтезу всех элементов, вплоть до железа. Но реакции «горения» ядер не могут развиваться дальше образования ядер Fe. После этого подобная реакция приводит к энергетической нестабильности ядер. Ядра Fe можно считать завершением термоядерных реакций (r-процессов). Железо (№ 26) имеет наиболее стабильное ядро. Каждый шаг ядерного синтеза от гелия до железа освобождает энергию и формирует более устойчивое ядро (рис. 4). С ходом времени количество водорода и гелия во Вселенной уменьшается, тяжелых элементов - возрастает. Относительная распространенность элементов во Вселенной приведена на рис. 5.

Рис. 4. Устойчивость ядер химических элементов

Ядра всех элементов после железа менее устойчивы, чем исходный материал, и не могут использоваться для образования энергии звезд. Элементы от № 27 (Mg) до № 92 (U) образуются, когда звезда истощает свое ядерное топливо, коллапсирует и взрывается как сверхновая. Ударная волна от взрыва сверхновой производит избыточную энергию, необходимую для синтеза элементов тяжелее железа.

Рис. 5. Относительная распространенность элементов во Вселенной.

Нейтроны возникают в звездах при «горении» Не. Поскольку они лишены заряда, они сравнительно легко включаются в ядра. Поглощая нейтроны и претерпевая реакции -распада ядра постепенно «тяжелеют». Эта реакция называется s-процессом. Считается, что Bi - конечный продукт s-процесса. Некоторые из образующихся элементов нестабильны и спонтанно распадаются до более стабильных веществ. Этот процесс, ядерный распад, идет с освобождением энергии.

3. История арены действия химии окружающей среды

Возникновение Солнечной системы

Сейчас общепринято, что элементы, составляющие в настоящее время Солнечную систему и нашу Землю, в большинстве своем возникли в результате ядерных реакций в звездах. Исключение составляют Н (полагают, что он существует с момента образования Вселенной), Не и нескольких легких элементов (D, Li, Be, B), которые образовались из Н во время Большого взрыва (Озима, 1990).

Поскольку скорость распада большинства тяжелых элементов хорошо известна, можно рассчитать точный возраст веществ, содержащих долгоживущие изотопы. Так был установлен возраст нашей Солнечной системы? 5 млрд. лет. Так как масса Солнца недостаточна для образования тяжелых элементов, следует полагать, что Солнечная система образовалась на месте взрыва сверхновой звезды. Гравитационные силы собрали рассеянное вещество. Большая часть его сконцентрировалась в виде Солнца, достаточно горячего для начала процесса ядерного синтеза.

Планеты Солнечной системы образовались, по-видимому, из дискообразного облака горячих газов, остатков взрыва сверхновой звезды. Сконденсировавшиеся пары образовали твердые частицы, объединившиеся в небольшие тела (планетезимали), в результате срастания которых возникли плотные внутренние планеты (от Меркурия до Марса). Крупные внешние планеты, будучи более удалены от Солнца, состоят из газов меньшей плотности, конденсация которых происходила при гораздо более низких температурах.

Практически все атомы нашей системы сконцентрированы в Солнце, где сосредоточено более 99,9 % массы всего вещества системы. С точки зрения химического состава Солнечной системы в целом, Земля состоит главным образом из кислорода и нелетучих элементов (таких как Fe, Mg, Si), причем доля последних << 0,1 % от общего числа атомов Солнечной системы (Озима, 1990).

Большинство элементов образовались до формирования Солнечной системы, во время взрыва Сверхновой, но некоторые появились после, при распаде радиоактивных изотопов. Например, установлено, что практически весь (более 99 %) аргон, который составляет около 1 % земной атмосферы, возник в результате реакции распада 40K 40Ar в недрах Земли после ее формирования и впоследствии улетучился. Все остальные элементы, кроме радиогенных Радиогенные элементы - элементы, возникшие в результате ядерных реакций распада., уже существовали до возникновения Солнечной системы.

Возникновение и история Земли

Образование Земли

Образование Земли было связано с аккумуляцией вещества солнечного газа. Относительно способа аккумуляции единого мнения не существует. В настоящее время имеются три главные гипотезы (Войткевич, 1988).

Гомогенная аккумуляция. Современное оболочечное строение Земли возникло лишь в ходе разогревания, частичного плавления и дифференциации первично гомогенного земного вещества.

Гетерогенная аккумуляция. Сначала возникло металлическое ядро, затем на него осели поздние конденсаты в виде силикатов, образовавшие мощную мантию.

Частично гетерогенная аккумуляция. Наибольшая разница в составе существовала лишь между центральными частями планеты и ее поверхностными слоями. Первоначально между ядром и мантией не было резких границ, установившихся позже.

Большая часть планетарного вещества сгруппировалась 4,56-4,7 млрд. лет назад. Масса планеты продолжала нарастать и через некоторое время стала достаточной для удержания атмосферы (4,4 млрд. лет назад).

Старейшие породы на Земле - цирконы западной Австралии, возраст которых около 4,1-4,3 млрд. лет. Тепло, выделяемое сначала благодаря процессу аккреции, а затем и радиоактивному распаду, расплавило сердцевину планеты и дало начало геотермальному циклу. Это вызвало дифференциацию элементов, впервые объясненную В. М. Гольдшидтом.

Первичная дифференциация элементов осуществлялась по их химическому сродству к железу, что естественно, поскольку железо составляет 35 % массы Земли.

В.М. Гольдшмидт разделил элементы на 4 группы:

Сидерофилы - восстанавливаются железом;

Литофилы - не восстанавливаются железом и склонны к образованию окислов;

Халькофилы - элементы не восстанавливающиеся железом и образуют сульфиды;

Атмофилы - элементы, улетучившиеся в атмосферу.

Элементы, занимающие минимумы на кривой атомных объемов, дают сплавы с железом, в ходе дифференциации они образовали земное ядро (сидерофильные элементы). Ионы сидерофилов (11 элементов) имеют оболочку из 8-18 электронов. Редокс потенциал их равен или выше, чем у железа. Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Mo, W, Re, Au, Ge, Sn составляют большую часть полиметаллических руд. Они тесно перемежаются с элементами, обнаруживая повышенное сродство к сере, мышьяку, а также фосфору, углероду и азоту.

Элементы, занимающие максимумы на кривой и расположенные на ее нисходящих частях, обладают сродством к кислороду (54 элемента), они образовали земную кору и верхнюю мантию (литофильные элементы). Образуют ионы с 8-электронной оболочкой. Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Sc, Y, Редкоземельные элементы, Si, Ti, Zr, Hf, Th, P, V, Nb, Ta, Cr, U, F. Cl, Br, I, Mn К этой группе относят и «факультативные» литофильные элементы: C, P, W, H, Tl, Ga, Ge, Fe. входят в состав силикатных, алюмосиликатных горных пород, образуют сульфатные, карбонатные, фосфатные, боратные и галогенидные минералы.

Элементы, занимающие восходящие части кривой, обладают сродством к сере, селену, теллуру (19 элементов), они сосредоточились в нижней мантии (халькофильные элементы). Имеют оболочку из 18 электронов. Cu, Ag, Zn, Cd, Hg, Ga, In, Tl, Bp, As, Sb, Bi, S, Se, Te Fe, Mo, Ca - «факультативные» халькофилы. образуют многочисленную группу сульфидных и теллуридных минералов. Они могут встречаться в самородном состоянии.

Инертные газы (He, Ne, Ar, Kr, Xe, Rn) относятся к атмофильной группе. Их атомы (кроме He) имеют 8-электронную оболочкой.

В настоящее время выделяют еще и биофилы. Биофильные элементы - это так называемые элементы жизни. Они делятся на макробиогенные (H, C, N, O, Cl, Br, S, P, Na, K, Mg, Ca) и микробиогенные (V, Mn, Fe, Co, Cu, Zn, B, Si, Mo, F).

Современная биогеохимическая классификация элементов приведена в таблице 1.

Таблица 1 Биогеохимическая классификация элементов

гамов вселенная биогеохимический термоядерный

Дифференциация мантии и образование геосфер

В процессе формирования планеты выплавлялись легкоплавкие, но тяжелые компоненты (железосернистые массы), опускавшиеся к центру и образовавшие ядро. При этом из первичной мантии увлекались к ядру сидеро- и халькофильные элементы. Одновременно менее легкоплавкие силикатные массы образовывали базальтовую магму, а затем и базальтовую кору океанического типа. В этот процесс вовлекались преимущественно лито- и атмофильные элементы.

При плавлении и дегазации верхней мантии на поверхность Земли поступала базальтовая магма, несущая растворенные в ней воду и газы. И первичная атмосфера, и первичная гидросфера Земли возникли за счет дегазации мантии. Из паров мантийного материала возникла кислая, сильно минерализованная гидросфера, изначально богатая анионами F-, Cl-, Br-, I-. Пресные воды образовались в результате естественной дистилляции. Тогда же образовалась и восстановительная первичная атмосфера.

Эволюция атмосферы

Атмосфера состоит из газов, окружающих Землю, и ее состав существенно менялся с момента образования планеты. Долгое время господствовала точка зрения, что первичная атмосфера Земли состояла преимущественно из аммиака и метана.

Первая атмосфера Земли была потеряна в космосе в первый миллион лет после аккреции. Эта атмосфера состояла из газов, заключенных внутри планетоидов, сформировавших Землю. Состояла она из углекислоты и азота со следовыми количествами метана, аммиака, двуокиси серы и соляной кислоты. Кислород отсутствовал.

Вторая атмосфера Земли предположительно содержала двуокись углерода, азот, воду. С охлаждением поверхности планеты образовались океаны, начались гидрологический цикл и процессы выветривания. Кроме того, океаны стали интенсивно поглощать углекислоту. Условия, существовавшие на поверхности планеты в те времена, по большей части неизвестны, поскольку интенсивность солнечного излучения была ниже современной на 30 %, а точный состав атмосферы неясен.

Бактериальный фотосинтез начался между 3,5-4 млрд. лет назад, но практически весь кислород поглощался океаном (в основном ионами железа). Два миллиарда лет тому назад кислород начал поступать в атмосферу, и современный состав атмосферы сформировался примерно 1,5 млрд. лет назад. В атмосфере кислород под действием ультрафиолетового излучения образовал озон. Озон выступил в качестве фильтра жесткой солнечной радиации, позволив жизни выйти на сушу из океана.

Возникновение жизни

Возникновение биосферы относится к самым ранним периодам развития планеты. Первые известные окаменелые остатки живых организмов (возраст - 3,55 млрд. лет), были обнаружены в Западной Австралии Уильямом Шопфом. Они чрезвычайно похожи по структуре на современных цианобактерий (иначе называемых сине-зелеными водорослями), достаточно высокоразвитых фотосинтетиков. Геохимические данные свидетельствуют о том, что фотоавтотрофная жизнь на планете существовала 4 млрд. лет тому назад. С биологической точки зрения ей должна была бы предшествовать жизнь гетеротрофная. Но, как и, главное, когда она успела возникнуть?

Многовековая борьба за доказательство невозможности возникновения живого из неживого, завершилась триумфальными экспериментами Л. Пастера, которые поставили, казалось бы, точку в этом споре. Но, тогда оказалось, что жизнь могла быть сотворена лишь Богом. С этим не могла смириться материалистическая наука ХХ в. А. И. Опарин в 1924 г., а затем Дж. Холдейн в 1929 г. выдвинули гипотезы биогенеза - возможности самопроизвольного зарождения жизни на Земле (см. Опарин, 1960; Бернал, 1969). Вообще говоря, было создано множество гипотез зарождения жизни, экспериментальной базой которых послужила, главным образом возможность синтеза простейших органических соединений в условиях древней Земли, как мы их себе сейчас представляем. Толчком к этому послужило открытие Миллером легкости образования аминокислот из неорганических предшественников (Miller, 1953). Как пишет Л. Маргелис (1983, с. 76): «Пуристы злословили, что это якобы никуда не годная экспериментальная органическая химия, состоящая в том, что создают среду, предположительно сходную с гадейской Гадейский эон, который начался, когда Земля превратилась в сплошное твердое тело., вносят в нее неорганические реагенты и подводят энергию, а затем среди продуктов реакций разыскивают молекулы, имеющие важное значение для современной жизни». Этот подход породил множество работ, доказывавших возможность синтеза достаточно сложных органических веществ в условиях древней Земли (см. например работы Горовица (Horowitz, 1962), Понампернума (Ponnamperuma, 1968), Фокса (1975), очерк Н. Л. Добрецова (2005) и мн. др.). Вместе с тем, «данные космохимии метеоритов, астероидов и комет свидетельствуют, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением» (Войткевич, 1988, с. 105).

Любой человек, знающий биологию хотя бы в пределах элементарного курса, представляет себе, что для возникновения жизни были необходимы:

эволюция малых молекул;

образование из них полимеров;

возникновение у них каталитических функций;

самосборка молекул;

возникновение мембран и создание доклеточной организации;

возникновение механизма наследственности;

образование клетки.

Если мы обратимся к С. Лему, более известному как писателю-фантасту, чем ученому, то и он пишет: «Осуществление каждого определенного этапа на пути к появлению праклетки обладало определенной вероятностью. Возникновение аминокислот в первичном океане под действием электрических разрядов было, например, вполне вероятным, образование из них пептидов - немного менее, но также в достаточной мере осуществимым; зато спонтанный синтез ферментов составляет - с этой точки зрения - явление сверхнеобычное» (Лем, 2002, с. 48). И, далее: «Термодинамика может еще «проглотить» случайное возникновение белков в растворе аминокислот, но самозарождение ферментов уже не проходит… Число возможных ферментов больше числа звезд во всей Вселенной. Если бы белкам в первичном океане пришлось дожидаться спонтанного возникновения ферментов, это могло бы с успехом длиться целую вечность» (Лем, 2002, с. 49). Зарождение жизни, в результате, доказывается лишь «простым фактом, что мы существуем и, стало быть, сами являемся косвенным аргументом в пользу биогенеза» (Лем, 2002, с. 50).

К такому же выводу приходит далеко не фантаст, а Лауреат Нобелевской премии, один из основоположников современной молекулярной биологии, соавтор открытия ДНК - «молекулы жизни», Ф. Крик, который, специально остановившись на ничтожно малой вероятности самозарождения жизни, далее пишет: «Сам факт того, что мы находимся здесь, обязательно означает, что жизнь действительно зародилась» (Крик, 2002, с. 77).

В.И. Вернадский вообще полагает, что «должны оставаться без рассмотрения все вопросы о начале жизни на Земле, если оно было… Эти вопросы вошли в науку извне, зародились вне ее - в религиозных или философских исканиях человечества… Все нам известные, точно установленные факты ни в чем не изменятся, если даже все эти проблемы получат отрицательное решение, т. е. если бы мы признали, что жизнь всегда была и не имела начала, что живое - живой организм - никогда и нигде не происходил из косной материи и что в истории Земли не было вообще геологических эпох, лишенных жизни» (Вернадский, 2004, с. 53).

Критические уровни содержания кислорода в атмосфере

По Л. Беркнеру и Л. Маршаллу (1966, цит. по Перельман, 1973) в абиогенную эпоху содержание кислорода не превышало 0,1 % от современного уровня. Кислород образовывался за счет фотодиссоциации воды. Жизнь в таких условиях могла развиваться только в водоемах глубиной более 12 м. По достижении уровня содержания кислорода 1 % от современного создалась возможность поглощения ультрафиолета. Область жизни значительно расширилась, поскольку стало достаточно 30 см воды для задержания ультрафиолета. Этот уровень был достигнут в начале палеозойской эры (примерно 600 млн. лет тому назад). Всего за 20 млн. лет возникло множество новых видов, ускорилось накопление кислорода в атмосфере. Уже через 200 млн. лет (конец силура, 400-420 млн. лет назад) содержание кислорода достигло 10 % от современного. Озоновый экран стал настолько мощен, что жизнь смогла выйти на сушу. Это привело к новому взрыву эволюции.

Этапы эволюции биосферы

Царство млекопитающих и покрытосеменных растений наступило 60 млн. лет назад, т.е., биосфера приобрела облик близкий современному. 6 млн. лет назад возникла группа приматов, являющихся прямыми и непосредственными предками современного человека, - гоминиды. 600 тыс. лет тому назад появился человек разумный, примерно 60 тыс. лет назад овладевший огнем и, таким образом, резко выделившийся из природы. Возникновение современной цивилизации можно отнести к периоду примерно 6 тыс. лет тому назад, а зарождение современного способа производства и начало Нового времени.

6 веков тому назад. Глобальных масштабов антропогенное воздействие на окружающую среду достигло, пожалуй, к середине ХХ века.

Размещено на Allbest.ru

...

Подобные документы

    Количественная оценка распределения химических элементов. Закономерности в распределении кларков. Изучение спектров звезд. Процессы образование химических элементов. Превращение водорода в гелий. Оценка состава Земли. Кларки элементов для земной коры.

    реферат , добавлен 16.05.2013

    Классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра - графическое выражение периодического закона Д.И. Менделеева: история открытия, структура и роль в развитии атомно-молекулярного учения.

    презентация , добавлен 26.09.2012

    Классификация химических элементов, их положение в периодической системе. Отличия элементов по степени заполнения различных электронных орбиталей (s, p, d, f) электронами. Биологическая роль исследуемых элементов и применение их соединений в медицине.

    презентация , добавлен 01.10.2014

    Описание интересных фактов открытия ряда элементов таблицы Менделеева. Свойства химических элементов, происхождение их названий. История открытия, в отдельных случаях получения элементов, их значение в народном хозяйстве, сфера применения, безопасность.

    реферат , добавлен 10.11.2009

    Геохимическая классификация химических элементов по Гольдшмидту: сидерофильные, халькофильные, литофильные и атмофильные. Внешние и внутренние факторы миграции химических элементов. Природные и техногенные геохимические барьеры и их разновидности.

    контрольная работа , добавлен 28.01.2011

    Понятие о химических элементах и простых телах, свойства химических элементов. Химические и физические свойства соединений, образуемых элементами. Нахождение точного соответствия между числами, выражающими атомные веса элементов, их место в системе.

    реферат , добавлен 29.10.2009

    Структура периодической системы химических элементов: история и современность. Структурная организация электронных систем в плоскости орбитального квантового числа и электронных подоболочек. Исторические предпосылки возникновения теории Нурлыбаева.

    курсовая работа , добавлен 22.01.2015

    История открытия и место в периодической системе химических элементов Д.И. Менделеева галогенов: фтора, хлора, брома, йода и астата. Химические и физические свойства элементов, их применение. Распространённость элементов и получение простых веществ.

    презентация , добавлен 13.03.2014

    Периодическая система химических элементов. Строение атомов и молекул. Основные положения координационной теории. Физические и химические свойства галогенов. Сравнение свойств водородных соединений. Обзор свойств соединений p-, s- и d-элементов.

    лекция , добавлен 06.06.2014

    Химические свойства элементов s-блока периодической системы. Механизмы образования осадков элементов групп IА и IIА. Возникновение разности потенциалов на клеточных мембранах. Электронное строение и биологический антагонизм натрия, калия, кальция, магния.

Знаменитая фраза Карла Сагана гласит, что мы все сделаны из звездной пыли. Это утверждение, в общем-то, близко к истине. Сразу после Большого взрыва Вселенная состояла из водорода, гелия и небольшого количества лития. Однако эти элементы не годятся для формирования каменных планет. Во Вселенной лишь из водорода и гелия Земля никогда бы не появилась на свет.

К счастью для нас, недра звезд являются настоящей химической кузницей. В ходе реакций синтеза внутри них могут формироваться элементы до железа. Когда звезда превращается в красного гиганта, а затем сбрасывает внешние слои своей атмосферы (стадия планетарной туманности), синтезированные в ее недрах элементы разлетаются по всей галактике и со временем входят в состав газопылевых облаков, из которых рождается следующее поколение звезд и планет.

Все, что тяжелее железа, как правило, синтезируется в результате вспышек сверхновых или же столкновения нейтронных звезд. Именно последние являются главным источником появления таких элементов как золото и платина.

Состав остатка сверхновой Кассиопея А


Представленная ниже инфографика подготовлена командой рентгеновского телескопа Chandra. Она демонстрирует источники происхождения химических элементов в Солнечной системе. Оранжевым показаны элементы, возникшие при взрыве массивных звезд, желтым — в недрах умирающих маломассивных звезд вроде нашего Солнца, зеленым — во время Большого взрыва, голубым — при взрыве белых карликов (сверхновые типа Iа), фиолетовым — при слиянии нейтронных звезд, розовым — из-за космических лучей, белым — синтезированные в лабораториях.

Что касается человеческого тела, то 65% его массы проходится на кислород. Весь кислород в Солнечной системе обязан своим происхождения сверхновым типа II. То же касается примерно 50% всего кальция и 40% железа. Поэтому почти три четверти элементов в нашем теле родилось во время взрывов массивных звезд. 16.5% приходится на вещество выброшенное красными гигантами, 1% на сверхновые типа Iа. Таким образом, утверждение Сагана соответствует действительности примерно на 90%. Именно такая часть наших тел является продуктом звездной эволюции.

Наука геохимия должна ответить на ряд вопросов связанных с происхождением и распространением элементов в природе. В настоящее время известно следующее.

Во-первых, распространенность объясняется строением атомных ядер: широко распространены элементы с небольшим и четным числом протонов и нейтронов.

Во-вторых, устойчивость элементов определилась в период их обра­зования, когда вещество Земли «проходило» звездный путь развития. При очень высоких температурах (миллионы градусов) возможно суще­ствование вещества только в виде плазмы со свободными ядерными частицами (р и п). Ядерные реакции приводили к образованию эле­ментов наиболее устойчивых, т.е. состоящих из четного числа протонов и(или)нейтронов.

Небольшая (низкая) распространенность первых элементов таблицы Д.И. Менделеева, вероятно, тоже определилась в звездную стадию раз­вития Земли. По одной из теорий, формирование элементов взаимосвя­зано с эволюцией звезд, т.е. образование элементов происходило в оп­ределенных космических телах - массивных звездах. Исходным мате­риалом для образования всех элементов был водород - гипотеза естест­венного синтеза элементов (цикл Бете). Возможный процесс термо­ядерных реакций с участием Н, Не, N и С (азотно-углеродный цикл)

Ядра углерода и азота в этом цикле являются катализаторами. Энер­гия, выделяемая при этом процессе, вероятно, соответствует энер­гии, выделяемой звездами и, в том числе, Солнцем.

Далее в этот цикл включается гелий: образуются 0 16 и Ne 20 ; далее при более высоких температурах с участием α –частиц («α-процесс») из ядер Ne 20 последовательно образуются Mg 24 – Si 28 – S 32 – Cl 36 – Ca 40 – Sc 44 – Ti 48 .

Такие термоядерные реакции вероятны на «белых карликах».

После «α-процесса» вновь сжимается ядро звезды, температура рас­тет, возникают термоядерные реакции в обстановке статического равно­весия. Образуются ядра, группирующиеся вокруг Fe 56 - железный мак­симум - V 50 - Сг 52 - Мn 54 -Fe 56 - Со 56 - Ni 58 . Это «е-процесс», при котором постоянно происходит как удаление частиц от ядер, так и их добавление.

Синтез элементов с массовым числом свыше 60 требует очень высоких температур, невозможных в условиях звезды. Более тяжелые элементы формируются иначе: путем простой бомбардировки нейтронами, которые легко захватываются ядрами. Бомбардировка медленными нейтронами -«s-процесс» - захват медленных (slow) нейтронов. Образование элемен­тов таким путем (s-процессом) может быть только до Bi 209 .

Более тяжелые элементы, следующие за Bi 209 , нестабильные и их син­тез возможен только при бомбардировке ядер быстрыми нейтронами -«r-процесс». Образуются элементы U, Th, Np, Pu і до Lr.

Следующий возможный «р-процесс», действие которого состоит в добавлении протонов: в ре­зультате цепной реакции с захватом нейтронов (при взрыве сверхновых) образуются редкие тяжелые изотопы.

И, наконец, «х-процесс» - образуются ядра дейтерия (Н 2) Li, Be, В.

Отмечается, что процессы генерации нейтронов происходят в звез­дах типа красных гигантов.

В целом для звезд характерно электронно-ядерное состояние веще­ства, однако теоретически возможно и нейтронное состояние с ядерной плотностью вещества (пульсары). При гигантских температурах воз­можно всеобщее превращение элементарных частиц друг в друга.

На Солнце и звездах идет в основном синтез элементов, на планетах (и на Земле) - преимущественно распад. Между отдельными частями космоса идет непрерывный обмен атомами и, следовательно, энергией. Несмотря на непрерывное перераспределение атомов между отдельны­ми частями Мироздания, в целом, количественные соотношения эле­ментов остаются в каждом отдельном участке (Земля, геосферы и др.) сопоставимыми.

Кларки элементов не являются геологически постоянными: главные особенности (т.е. среднее содержание химических элементов в земной коре горных породах, в океане) не изменились, однако кларки отдель­ных элементов все же меняются. Так, при радиоактивном распаде меня­ется со временем количество радиоактивных (U, Th и др.) и радиоген­ных (РЬ, Аг и др.) элементов в земной коре. В атмосфере под действием космических лучей происходит образование элементов (13 С, 3 Н, 14 С и других радиоактивных изотопов). Некоторые элементы (Fe, Mg, S и др.) поступают на Землю в составе метеоритов, особенно существенно в ранние геологические периоды жизни Земли. Но космос также частично и забирает некоторые элементы Н, Ne, Не, которые улетучиваются (диссипируют) в межпланетное пространство.

Таким образом, за несколько миллиардов лет истории Земли менялся химический состав отдельных геосфер и, как отметил В.И. Вернадский, «земная кора два миллиарда лет назад и в современную эпоху - это химически разные тела». Об этом говорит и соотношение между гор­ными породами: на ранних этапах становления Земли господствующая роль принадлежала эффузивным породам, преимущественно основного состава, но в настоящее время преобладают осадочные породы на по­верхности материков, меньшую роль играют гранитоиды и совсем мало основных эффузивов.

Была выяснена механика движения планет и звёзд. После того как этот рубеж остался позади, мифотворческие концепции происхождения энергии Солнца и звёзд уже не могли восприниматься всерьёз, и хорошо, казалось бы, но изученное астроно́мами небо вдруг покрылось вопросительными знаками. Для проникновения в недра звёзд учёные располагали единственным орудием - «аналитической бурово́й машиной» собственного мозга, по выражению английского астрофизика Артура Стэнли Э́ддингтона (1882-1944).

Первым выдвинул идею о возможности «перекачки» звёздной массы в энергию через термоядерные реакции синтеза гелия и водорода (1920 г.). Он писал: «Внутренние области звезды представляют собой смесь из атомов, электронов и волн эфира (так учёный называет электромагнитные волны). Мы должны призвать на помощь новейшие достижения атомной физики для того́, чтобы понять законы этого хаоса. Мы начали исследовать внутреннее строение звезды; вскоре мы обнаружили, что исследуем внутреннее строение атома». И далее: «...необходимая энергия может освободиться при перегруппировке протонов и электронов в атомных я́драх (превращение элементов) и гораздо бо́льшая энергия - при их аннигиляции... Тот или другой процесс может быть использован для получения солнечного тепла...».

О каких же этапах звёздных биографий может рассказать современная наука?

Сразу оговоримся: существующие представления о происхождении и развитии звёзд, несмотря на широкое признание, пока не вступили в права незы́блемой теории. Много сложных вопросов ещё ждут ответа. Однако эти представления, по-видимому, достаточно правильно обрисо́вывают контуры звёздной эволюции. Бытие звезды начинается с огромного холодного облака газа, состоящего в основном из водорода. Под действием сил тяготения оно постепенно сжима́ется. Потенциальная гравитационная энергия частичек газа переходит в кинетическую, т.е. тепловую, около половины которой расходуется на излучение. Остальная идёт на разогрев образующегося в центре плотного сгустка - ядра́. Когда температура и давление в ядре возрастают настолько, что становятся возможными термоядерные реакции, начинается самый долгий этап эволюции звезды - термоядерный. Часть энергии, выделяющейся в её ядре при синтезе гелия из водорода, уно́сится в мировое пространство всепроника́ющими нейтрино, а основная доля переносится к поверхности светила γ-квантами и частицами сильно ионизованного газа. Этот истекающий от центра поток энергии противостоит давлению внешних слоёв и препятствует дальнейшему сжатию. Такое равновесное состояние звезды с массой, вдвое превышающей массу Солнца, длится почти 10 млрд. лет.

После того как большая часть водорода в ядре вы́горела, энергии для поддержания равновесия уже не хватает. «Термоядерный реактор» звезды постепенно переходит на новый режим. Звезда сжима́ется, давление и температура в её центре возрастают, и примерно при 100 млн. градусов в реакции наряду́ с протонами вступают я́дра гелия. Синтезируются более тяжёлые элементы - углерод, азот, кислород, а от центра звезды к поверхности, подобно одному из кругов, разбега́ющихся по воде от брошенного камня, движется слой, в котором продолжает сгорать водород.

Со временем исчерпываются и ресурсы гелия. Звезда ещё сильнее сжима́ется, температура в её центре повышается до 600 млн. градусов. Теперь в реакциях участвуют ядра с Z > 2 . А к периферии движется слой сгорающего гелия.

Шаг за шагом вещество в ядре занимает всё новые клетки в таблице Менделеева и при 4 млрд. градусов «добирается» наконец до желе́за и элементов, близких к нему по массе ядра́. У этих элементов максимальный дефект масс, т.е. энергия связи в я́драх наибольшая, и они представляют собой «шлак» «термоядерных звёздных реакторов»: никакие ядерные реакции более не способны извлечь из них энергию. А раз так, невозможно и дальнейшее выделение энергии за счёт реакций синтеза - термоядерный период звезды закончился. Дальнейший ход эволюции вновь определяется гравитационными силами, сжима́ющими звезду. Начинается её гибель.

Как именно будет умирать звезда, зависит от её массы. Например, звёздам с массой, превышающей две солнечные, уготован самый драматический конец. Силы тяготения оказываются настолько мощными, что осколки раздавленных атомов - электроны и я́дра - образуют как бы два растворённых друг в друге газа - электронный и ядерный. Хотя ход эволюции таких звёзд на стадиях, следующих за выгора́нием лёгких элементов, не может считаться точно установленным, тем не менее существующая теория признаётся большинством астрофизиков. Своим успехом эта теория прежде всего обязана тому, что предлагаемый ею механизм образования химических элементов и предска́зываемая распространённость элементов во Вселенной хорошо согласуются с данными наблюдений.

Итак, массивная звезда исчерпа́ла все запасы ядерного горючего. Последовательно нагрева́ясь до нескольких миллиардов градусов, она обратила основную часть вещества в ядерную золу́ - элементы группы желе́за с атомными массами от 50 до 65 (от вана́дия до цинка). Дальнейшее сжатие звезды приводит к нарушению стабильности образовавшихся я́дер, которые начинают разрушаться. Их осколки - alfa -частицы, протоны и нейтроны - вступают в реакции с я́драми группы желе́за и соединяются с ними. Образуются более тяжёлые элементы, тоже вступающие в реакции, - заполняются следующие клетки периодической таблицы. Из-за чрезвычайно высоких температур эти процессы протекают очень быстро - в течение нескольких тысячелетий.

«Тяжёлая» область таблицы Менделеева

При делении я́дер группы желе́за, как и при слиянии с ними нуклонов и лёгких я́дер (в реакциях синтеза, приводящих к заполнению «тяжёлой» области таблицы Менделеева), энергия не выделяется, а, наоборот, поглощается. В результате сжатие звезды всё убыстряется. Электронный газ более не способен противостоять давлению газа ядерного. Наступает коллапс - за несколько секунд ядро звезды претерпевает катастрофическое сжатие: оболочка звезды обрушивается, «взрывается внутрь». Плотность вещества увеличивается настолько, что даже нейтри́но не могут покинуть звезду. Однако «пленение» мощного нейтринного потока, уносящего большую часть энергии коллапси́рующего ядра звезды, не длится долго. Рано или поздно импульс «запертых» нейтри́но сообщается оболочке, и она сбрасывается, увеличивая в миллиарды раз свечение звезды.

Астрофизики считают, что именно так вспыхивают сверхновые звёзды. Гигантские взрывы, сопровождающие эти события, выбрасывают в межзвёздное пространство значительную часть вещества звезды: до 90% её массы.

Крабовидная туманность, например, представляет собой взорва́вшуюся и расширя́ющуюся оболочку одной из самых ярких сверхновых. Вспышка её произошла, как свидетельствуют звёздные летописи китайских и японских астрономов, в 1054 г. и была необычайно яркой: звезду видели даже днём в течение 23 суток. Измерения скорости расширения Крабовидной туманности показали, что за девять веков она могла достигнуть своих нынешних размеров, т. е. подтвердили дату её рождения. Однако гораздо более весомое доказательство правильности изложенной модели и основанных на ней теоретических предсказаний мощности нейтринного потока было получено 23 февраля 1987 г. Тогда астрофизики зарегистрировали нейтринный импульс, которым сопровождалось рождение сверхновой в Большом Магеллановом Облаке.

В них обнаружили линии тяжёлых элементов, на основании чего немецкий астроном Ва́льтер Бааде (1893-1960 г.) пришёл к выводу, что Солнце и большинство звёзд представляют собой по крайней мере второе поколение звёздного населения. Материалом для этого второго поколения послужили межзвёздный газ и космическая пыль, в которую превратилось вещество сверхновых более раннего поколения, рассеянное их взрывами.

Не могут ли во взрывах звёзд рождаться я́дра сверхтяжёлых элементов? Ряд теоретиков такую возможность допускают.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

14.1 Этапы синтеза элементов

Для объяснения распространенности в природе различных химических элементов и их изотопов в 1948 году Гамовым была предложена модель Горячей Вселенной. По этой модели все химические элементы образовывались в момент Большого Взрыва. Однако это утверждение впоследствии было опровергнуто. Доказано, что только легкие элементы могли образоваться в момент Большого Взрыва, а более тяжелые возникли в процессах нуклеосинтеза. Эти положения сформулированы в модели Большого Взрыва (см. п. 15).
По модели Большого Взрыва формирование химических элементов началось с первоначального ядерного синтеза легких элементов (Н, D, 3 Не, 4 Не, 7 Li) спустя 100 секунд после Большого Взрыва при температуре Вселенной 10 9 K.
Экспериментальную основу модели составляют расширение Вселенной, наблюдаемое на базе красного смещения, первоначальный синтез элементов и космическое фоновое излучение.
Большим достоинством модели Большого Взрыва является предсказание о распространенности D, Не и Li, отличающихся друг от друга на много порядков.
Экспериментальные данные о распространенности элементов в нашей Галактике показали, что атомов водорода 92%, гелия − 8%, и более тяжелых ядер − 1 атом на 1000, что согласуется с предсказаниями модели Большого Взрыва.

14.2 Ядерный синтез − синтез легких элементов (Н, D, 3 Не, 4 Не, 7 Li) в ранней Вселенной.

  • Распространенность 4 Не или его относительная доля в массе Вселенной Y = 0.23 ±0.02. По крайней мере половина гелия, образованного в результате Большого Взрыва, содержится в межгалактическом пространстве.
  • Первоначальный дейтерий существует только внутри Звезд и быстро превращается в 3 Не.
    Из данных наблюдений получаются следующие ограничения на распространенность дейтерия и Не относительно водорода:

10 -5 ≤ D/H ≤ 2·10 -4 и
1.2·10 -5 ≤ 3 Не/H ≤ 1.5·10 -4 ,

причем наблюдаемое отношение D/H составляет лишь долю ƒ от первоначального значения: D/H = ƒ(D/H) первонач. Поскольку дейтерий быстро превращается в 3 Не, получается следующая оценка для распространенности:

[(D + 3 Не)/H] первонач ≤ 10 -4 .

  • Распространенность 7 Li измерить трудно, однако используются данные по изучению атмосфер звезд и зависимость распространенности 7 Li от эффективной температуры. Оказывается, что, начиная с температуры 5.5·10 3 K, количество 7 Li остается постоянным. Наилучшая оценка средней распространенности 7 Li имеет вид:

7 Li/H = (1.6±0.1)·10 -10 .

  • Распространенность более тяжелых элементов, таких как 9 Be, 10 В и 11 В, меньше на несколько порядков. Так, распространенность 9 Ве/Н < 2.5·10 -12 .

14.3 Синтез ядер в звездах Главной Последовательности при Т < 108 K

Синтез гелия в звездах Главной Последовательности в рр- и CN-циклах происходит при температуре Т ~ 10 7 ÷7·10 7 K. Водород перерабатывается в гелий. Возникают ядра легких элементов: 2 Н, 3 Не, 7 Li, 7 Be, 8 Ве, но их мало из-за того, что в дальнейшем они вступают в ядерные реакции, а ядро 8 Be практически мгновенно распадается из-за малого времени жизни (~ 10 -16 с)

8 Ве → 4 Не + 4 Не.

Процесс синтеза, казалось, должен был бы прекратиться, но природа нашла обходной путь.
Когда Т > 7·10 7 K, гелий "сгорает" , превращаясь в ядра углерода. Происходит тройная гелиевая реакция − "Гелиевая вспышка" − 3α → 12 С, но ее сечение очень мало и процесс образования 12 С идет в два этапа.
Происходит реакция слияния ядер 8 Ве и 4 Не с образованием ядра углерода 12 С* в возбужденном состоянии, которое возможно благодаря наличию у ядра углерода уровня 7.68 МэВ, т.е. происходит реакция:

8 Ве + 4 Не → 12 С* → 12 С + γ.

Существование уровня энергии ядра 12 С (7.68 МэВ) помогает обойти малое время жизни 8 Be. Благодаря наличию этого уровня у ядра 12 С происходит Брейт-Вигнеровский резонанс . Ядро 12 С переходит на возбужденный уровень с энергией ΔW = ΔМ + ε,
где εM = (M 8Be − М 4Hе)− M 12C = 7.4 МэВ, а ε компенсируется за счет кинетической энергии.
Эта реакция была предсказана астрофизиком Хойлом, а затем воспроизведена в лабораторных условиях. Затем начинают идти реакции:

12 С + 4 Не → 16 0 + γ
16 0 + 4 Не → 20 Ne + γ и так до А ~ 20.

Так нужный уровень ядра 12 С позволил пройти узкое место в термоядерном синтезе элементов.
У ядра 16 О нет таких уровней энергии и реакция образования 16 О идет очень медленно

12 С + 4 Не → 16 0 + γ.

Эти особенности протекания реакций привели к важнейшим следствиям: благодаря им оказалось одинаковое число ядер 12 С и 16 0, что создало благоприятные условия для образования органических молекул, т.е. жизни.
Изменение уровня 12 С на 5% привело бы к катастрофе − дальнейший синтез элементов прекратился бы. Но так как этого не произошло, то образуются ядра с A в диапазоне

А = 25÷32

Это приводит к значениям А

Все ядра Fe, Co, Сr образуются за счет термоядерного синтеза.

Можно вычислить распространенность ядер во Вселенной, исходя из существования этих процессов.
Сведения о распространенности элементов в природе получаются из спектрального анализа Солнца и Звезд, а также космических лучей. На рис. 99 представлена интенсивность ядер при разных значениях А.

Рис. 99: Распространенность элементов во Вселенной.

Водород Н − самый распространенный элемент во Вселенной. Лития Li, бериллия Be и бора В на 4 порядка меньше соседних ядер и на 8 порядков меньше, чем Н и Не.
Li, Be, В − хорошее горючее, они быстро сгорают уже при Т ~ 10 7 K.
Труднее объяснить, почему они все же существуют − скорее всего, благодаря процессу фрагментации более тяжелых ядер на стадии протозвезды.
В космических лучах ядер Li, Be, В много больше, что также является следствием процессов фрагментации более тяжелых ядер при взаимодействии их с межзвездной средой.
12 С÷ 16 О − результат Гелиевой вспышки и существования резонансного уровня у 12 С и отсутствия такового у 16 О, ядро которого является также дважды магическим. 12 С − полумагическое ядро.
Таким образом, максимум распространенности у ядер железа 56 Fe, a затем − резкий спад.
Для А > 60 синтез энергетически невыгоден.

14.5 Образование ядер тяжелее железа

Доля ядер с А > 90 невелика − 10 -10 от ядер водорода. Процессы образования ядер связаны с побочными реакциями, происходящими в звездах. Таких процессов известно два:
s (slow) − медленный процесс,
г (rapid) − быстрый процесс.
Оба эти процесса связаны с захватом нейтронов т.е. надо, чтобы возникли такие условия, при которых образуется много нейтронов. Нейтроны образуются во всех реакциях горения.

13 С + 4 Не → 16 0 + n − горение гелия,
12 С + 12 С → 23 Mg + n − углеродная вспышка,
16 O + 16 O → 31 S + n − кислородная вспышка,
21 Ne + 4 Не → 24 Mg + n − реакция с α-частицами.

В результате накапливается нейтронный фон и могут протекать s-и r-процессы − захват нейтронов. При захвате нейтронов образуются нейтроно-избыточные ядра, а затем происходит β-распад. Он превращает их в более тяжелые ядра.

Понравилась статья? Поделиться с друзьями: