Основные характеристики резины, абразивных материалов, рабочих органов шелушильно-шлифовальных машин и сжатого воздуха. Резины и эластомеры (эластопласты) классификация, свойства, хранение Изменение модуля упругости резины лабораторная работа

Наш робот распознал:
Лабораторная работа 2

Измерение модуля упругости резины

Работа - веселее некуда: обычно первые се минуть

Хлопками резины по всех концах класса и приглушенными яш. гласами Чего ты делаешь! Сейчас получишь... и так далее. Чтобы быстрее покончить с этим необходимым ритуалом и перейти к тому, что учебнике, проведем небольшой мысленный жепернченг.

Возьмем мысленно рези новы! шнур и прицепим I мысленно к нему стограммовый грузик. Натянем мысленно шнур за грузик и разожмем мысленно пальцы. Совет Ответьте можно письменно наследи пне вопросы: 1 По какой траектории полетит грузик и что случится в конце пути

С его хрупкими крючками 2 как о грен I нр юг па ллр грушка:

Б лабораторный шкаф, чст;ркамн и термометрам:

В голова впереди сидящего, и сможет ли она после так проделать что-либо мысленно

Короче, мы в десятом классе, ребята. Начинаем отвыкать от дурачеств. Л чтобы вышеописанное аеселье не случилось без злого умысла, помните: грузики на шнур вешать осторожно, шнур не растягивать больше, чем надо; отправляясь на камчатку за линейкой, убеждаться, что конструкция не прицепилась к лилжаку н не тянется за вами взводимой катапультой. Наиболее опасливые могут придти на урок а хоккейном шлеме - школьной программой это не возбраняется.

Приятно пользоваться уже готовой формулой, по еще Суть приятнее знать, откуда эта формула взялась. Л получили мы гтроблемьг ее из закона Гука. Если помните, закон этот справедлив при ых деформациях тела еше один аргумент в пользу того, резину сильно растягивать нельзя и выглядит так:

Н модуль Юнга, он отсюда равен

Механическое напряжение о по определен

Следующим образом:

Знак модуля в формуле уг женни, и при сжатии тела: так как V модуля используем обычные скобки

Такова наша рабочая формула. Последнее препятствие, которое вам предстоит преодолеть это определение К I плошали гиперемии о а

Пня иш р.;: I .,-.:м сечсиле кр>. .те. ,. ее.....ри-оо;. о.о.мое гч.ш

Резина-5 аЬ ширину умножаем на толщину. Шнуре греуюльн и вообще фигурным поперечным сечением вам вряд ли п

Расстояние 1, м.07

Расстояние 1, м 0.088

Ширина шшр,1 и, м 0,01

Толщина шнура/, м 0.0005

Площадь поперечного сечения К. м 50-

Сила упругости У. Н з

Вычислено

Инструментальная гкм рс.....чс1 ь цигейки. Д,1, м 0.0001

Погрешность отсчета длины, Д-,1, м 0,0005

Абсолютная погрешность. А1. м 0,0006

Инструментальная погрешность микрометра. ЛЛ. м +0,000005

Погрешность отсчета толщины. Л.Л м +0.000005

Абсолютная погрешность Ли м 0,00001

Им:...-.:; ;1Ш10С1к динамометра, ДР. Н 0,005

Погрешность отсчета силы, Л-,Р. 11 0,05

Лбео.икч пан погрешность ЛК. Н 0,055

Модуль Юнга У. Па 2,3х о

Относительная погрешность е, 14

Абсолютная погрешность ЛГ. Па.1,22x10

Площадь поперечного сечения шнура: 5 л Ь

5 0,01 м 0.0005 м 0,000005 м2 5х 10 мг.

Модуль Юнга: Е,.,.

7 2.3x10 Па.

С 5х106м20,088м-0.07м

Е Расчет погрешности в нашем примере осложняется тем, что, как вы уже поняли, шнур имеет прямоугольное сечение: ширтк с: о мы измерили линейкой, и ю.нпннч микрометром, то есть приборами с различной точностью. Впрочем, при известной внимательности в последующем расчете разобраться нетрудно. Погрешность ичмерчнин:

Д1 - Д1 + 4,1; Д1 0,0001 м + 0,0005 м 0,0006 м; Ь ДКЛ + АЬ; АЬ 0,000005 м - 0,000005 м - 0,00001 м: ДГ - Д,Г + ДР; ДР 0,005 Н + 0,05 Н 0,055 11. Относительная погрешность: ДР Д! Д1 Дй. Д1 Е Р +1+ а+ Ь +21-1
0.055 П 0,0006 м 0.0006 м 0.00001 м 0,0006 м

Е ЗН + 0,07 м + 0,01м 0,0005 м 0,088 м - 0,07 м

0,018 + 0,008 + 0,06 + 0,02 + 0,033 - 0,14 14 Досол Ю1 пая погрешность: ДЕ - Ее; ДЕ 2,3х106 Па 0,14 3,22х105. Ответ: Е 2,3x10 3,22x10 Па.

Муниципальное общеобразовательное учреждение

«Ягоднинская средняя общеобразовательная школа»

Методическая разработка лабораторной работы

Учитель физики:

Открытый урок в 10-м классе по теме: лабораторная работа "Измерение модуля упругости резины"

Цели урока: обеспечение более полного усвоения материала, формирование представления научного познания, развития логического мышления, экспериментальных навыков, исследовательских умений; навыков определения погрешностей при измерении физических величин, умения делать правильные выводы по результатам работы.

Оборудование: установка для измерения модуля Юнга резины, динамометр, грузы.

План урока:

I. Орг. момент.

II. Повторение материала, знание которого необходимо для выполнения лабораторной работы.

III. Выполнение лабораторной работы.

1. Порядок выполнения работы (по описанию в учебнике).
2. Определение погрешностей.
3. Выполнение практической части и расчетов.
4. Вывод.

IV. Итог урока.

V. Домашнее задание.

ХОД УРОКА

Учитель: На прошлом уроке вы познакомились с деформациями тел и их характеристиками. Вспомним, что такое деформация?

Учащиеся: Деформация – это изменение формы и размеров тел под действием внешних сил.

Учитель: Окружающие нас тела и мы подвергаемся различным деформациям. Какие виды деформаций вы знаете?

Ученик: Деформации: растяжение, сжатие, кручение, изгиб, сдвиг, срез.

Учитель: А ещё?

Деформации упругие и пластические.

Учитель: Охарактеризуйте их.

Ученик: Упругие деформации исчезают после прекращения действия внешних сил, а пластические деформации сохраняются.

Учитель: Назовите упругие материалы.

Ученик: Сталь, резина, кости, сухожилия, всё человеческое тело.

Учитель: Пластичные.

Ученик: Свинец, алюминий , воск, пластилин, замазка, жевательная резинка.

Учитель: Что возникает в деформированном теле?

Ученик: В деформированном теле появляется сила упругости и механическое напряжение.

Учитель: Какими физическими величинами можно охарактеризовать деформации, например, деформацию растяжения?

Ученик:

1. Абсолютным удлинением

2. Механическим напряжением?

https://pandia.ru/text/78/185/images/image005_26.jpg" width="72" height="57">

Учитель: Что оно показывает?

Ученик: Во сколько раз абсолютное удлинение меньше первоначальной длины образца

Учитель: Что такое Е ?

Ученик: Е – коэффициент пропорциональности или модуль упругости вещества (модуль Юнга).

Учитель: Что вы знаете о модуле Юнга?

Ученик: Модуль Юнга одинаков для образцов любой формы и размеров, изготовленных из данного материала.

Учитель: Что характеризует модуль Юнга?

Ученик: Модуль упругости характеризует механические свойства материала и не зависит от конструкции изготовленных из него деталей.

Учитель: Какие механические свойства присущи веществам?

Ученик: Могут быть хрупкими, пластичными, упругими, прочными.

Учитель: Какие характеристики вещества необходимо учитывать при его практическом применении?

Ученик: Модуль Юнга, механическое напряжение и абсолютное удлинение.

Учитель: А при создании новых веществ?

Ученик: Модуль Юнга.

Учитель: Сегодня вы будете выполнять лабораторную работу по определению модуля Юнга резины. Какова ваша цель?

На примере резины научиться определять модуль упругости любого вещества.

Зная модуль упругости вещества, мы можем говорить о его механических свойствах и практическом применении. Резина широко применяется в различных аспектах нашей жизни. Где применяется резина?

Ученик: В быту: резиновые сапоги, перчатки, коврики, бельевая резинка, пробки, шланги, грелки и прочее.

Ученик: В медицине: жгуты, эластичные бинты, трубки, перчатки, некоторые части приборов.

Ученик: На транспорте и в промышленности: покрышки и шины колёс, ремни передач, изолента, надувные лодки, трапы, уплотнительные кольца и многое другое.

Ученик: В спорте: мячи, ласты, гидрокостюмы, эспандеры и прочее.

Учитель: Говорить о применении резины можно очень много. В каждом конкретном случае резина должна иметь определенные механические свойства.

Перейдем к выполнению работы.

Вы уже обратили внимание, что каждый ряд получил свое задание. Первый ряд работает с бельевой резинкой. Второй ряд – с фрагментами кровоостанавливающего жгута. Третий ряд - с фрагментами эспандера. Таким образом, класс разбит на три группы. Все вы будете определять модуль упругости резины, но каждой группе предлагается провести свое небольшое исследование.

1-ая группа. Определив модуль упругости резины, вы получите результаты, обсудив которые, сделайте вывод о свойствах резины, применяемой для изготовления бельевой резинки.

2-ая группа. Работая с различными фрагментами одного и того же кровоостанавливающего жгута и определив модуль упругости, сделайте вывод о зависимости модуля Юнга от формы и размеров образцов.

3-я группа. Изучить устройство эспандера. Выполнив лабораторную работу, сравнить абсолютное удлинение одной резиновой струны, нескольких струн и всего жгута эспандера. Сделать из этого вывод и, может быть, выступить с какими-то своими предложениями по изготовлению эспандеров.

При измерении физических величин неизбежны погрешности.

Что такое погрешность?

Ученик: Неточность измерения физической величины.

Учитель: Чем вы будете руководствоваться при измерении погрешности?

Ученик: Данными таблицы 1 стр.205 учебника (работа выполняется по описанию, данному в учебнике)

После завершения работы представитель каждой группы делает сообщения о её результатах.

Представитель первой группы:

При выполнении лабораторной работы мы получили значения модуля упругости бельевой резинки:

Е1 = 2,24 · 105 Па
Е2 = 5· 107 Па
Е3 = 7,5· 105 Па

Модуль упругости бельевой резинки зависит от механических свойств резины и оплетающих её нитей, а также от способа переплетения нитей.

Вывод: бельевая резинка очень широко применяется в белье, в детской, спортивной и верхней одежде. Поэтому для её изготовления применяются различные сорта резины, нитей и различные способы их переплетения.

Представитель второй группы:

Наши результаты:

Е1 = 7,5 · 106 Па
Е1 = 7,5 · 106 Па
Е1 = 7,5 · 106 Па

Модуль Юнга одинаков для всех тел любой формы и размеров, изготовленных их данного материала

Представитель третьей группы:

Наши результаты:

Е1 = 7,9 · 107 Па
Е2 = 7,53 · 107 Па
Е3 = 7,81 · 107 Па

Для изготовления эспандеров можно использовать резину разных сортов. Жгут эспандера набирается из отдельных струн. Мы это рассмотрели. Чем больше струн, тем больше площадь поперечного сечения жгута, меньше его абсолютное удлинение. Зная зависимость свойств жгута от его размера и материала, можно изготовить эспандеры для различных физкультурных групп.

Итог урока.

Учитель: Чтобы создавать и применять различные материалы, необходимо знать их механические свойства. Механические свойства материала характеризует модуль упругости. Сегодня вы практически его определили для резины и сделали свои выводы. В чем они заключаются?

Ученик: Я научился определять модуль упругости вещества, оценивать погрешности в своей работе, сделал научные предположения о механических свойствах материалов (в частности, резины) и практической направленности применения этих знаний.

Учащиеся сдают листы контроля.

На дом: § 20-22 повторить.

Цели урока: обеспечение более полного усвоения материала, формирование представления научного познания, развития логического мышления, экспериментальных навыков, исследовательских умений; навыков определения погрешностей при измерении физических величин, умения делать правильные выводы по результатам работы.

Оборудование: установка для измерения модуля Юнга резины, динамометр, грузы.

План урока:

I. Оргмомент.

II. Повторение материала, знание которого необходимо для выполнения лабораторной работы.

III. Выполнение лабораторной работы.

1. Порядок выполнения работы (по описанию в учебнике).
2. Определение погрешностей.
3. Выполнение практической части и расчетов.
4. Вывод.

IV. Итог урока.

V. Домашнее задание.

ХОД УРОКА

Учитель: На прошлом уроке вы познакомились с деформациями тел и их характеристиками. Вспомним, что такое деформация?

Учащиеся: Деформация – это изменение формы и размеров тел под действием внешних сил.

Учитель: Окружающие нас тела и мы подвергаемся различным деформациям. Какие виды деформаций вы знаете?

Ученик: Деформации: растяжение, сжатие, кручение, изгиб, сдвиг, срез.

Учитель: А ещё?

Деформации упругие и пластические.

Учитель: Охарактеризуйте их.

Ученик: Упругие деформации исчезают после прекращения действия внешних сил, а пластические деформации сохраняются.

Учитель: Назовите упругие материалы.

Ученик: Сталь, резина, кости, сухожилия, всё человеческое тело.

Учитель: Пластичные.

Ученик: Свинец, алюминий, воск, пластилин, замазка, жевательная резинка.

Учитель: Что возникает в деформированном теле?

Ученик: В деформированном теле появляется сила упругости и механическое напряжение.

Учитель: Какими физическими величинами можно охарактеризовать деформации, например, деформацию растяжения?

Ученик:

1. Абсолютным удлинением

2. Механическим напряжением?

3. Относительным удлинением

Учитель: Что оно показывает?

Ученик: Во сколько раз абсолютное удлинение меньше первоначальной длины образца

Учитель: Что такое Е ?

Ученик: Е – коэффициент пропорциональности или модуль упругости вещества (модуль Юнга).

Учитель: Что вы знаете о модуле Юнга?

Ученик: Модуль Юнга одинаков для образцов любой формы и размеров, изготовленных из данного материала.

Учитель: Что характеризует модуль Юнга?

Ученик: Модуль упругости характеризует механические свойства материала и не зависит от конструкции изготовленных из него деталей.

Учитель: Какие механические свойства присущи веществам?

Ученик: Могут быть хрупкими, пластичными, упругими, прочными.

Учитель: Какие характеристики вещества необходимо учитывать при его практическом применении?

Ученик: Модуль Юнга, механическое напряжение и абсолютное удлинение.

Учитель: А при создании новых веществ?

Ученик: Модуль Юнга.

Учитель: Сегодня вы будете выполнять лабораторную работу по определению модуля Юнга резины. Какова ваша цель?

На примере резины научиться определять модуль упругости любого вещества.

Зная модуль упругости вещества, мы можем говорить о его механических свойствах и практическом применении. Резина широко применяется в различных аспектах нашей жизни. Где применяется резина?

Ученик: В быту: резиновые сапоги, перчатки, коврики, бельевая резинка, пробки, шланги, грелки и прочее.

Ученик: В медицине: жгуты, эластичные бинты, трубки, перчатки, некоторые части приборов.

Ученик: На транспорте и в промышленности: покрышки и шины колёс, ремни передач, изолента, надувные лодки, трапы, уплотнительные кольца и многое другое.

Ученик: В спорте: мячи, ласты, гидрокостюмы, эспандеры и прочее.

Учитель: Говорить о применении резины можно очень много. В каждом конкретном случае резина должна иметь определенные механические свойства.

Перейдем к выполнению работы.

Вы уже обратили внимание, что каждый ряд получил свое задание. Первый ряд работает с бельевой резинкой. Второй ряд – с фрагментами кровоостанавливающего жгута. Третий ряд - с фрагментами эспандера. Таким образом, класс разбит на три группы. Все вы будете определять модуль упругости резины, но каждой группе предлагается провести свое небольшое исследование.

1-ая группа. Определив модуль упругости резины, вы получите результаты, обсудив которые, сделайте вывод о свойствах резины, применяемой для изготовления бельевой резинки.

2-ая группа. Работая с различными фрагментами одного и того же кровоостанавливающего жгута и определив модуль упругости, сделайте вывод о зависимости модуля Юнга от формы и размеров образцов.

3-я группа. Изучить устройство эспандера. Выполнив лабораторную работу, сравнить абсолютное удлинение одной резиновой струны, нескольких струн и всего жгута эспандера. Сделать из этого вывод и, может быть, выступить с какими-то своими предложениями по изготовлению эспандеров.

При измерении физических величин неизбежны погрешности.

Что такое погрешность?

Ученик: Неточность измерения физической величины.

Учитель: Чем вы будете руководствоваться при измерении погрешности?

Ученик: Данными таблицы 1 стр.205 учебника (работа выполняется по описанию, данному в учебнике)

После завершения работы представитель каждой группы делает сообщения о её результатах.

Представитель первой группы:

При выполнении лабораторной работы мы получили значения модуля упругости бельевой резинки:

Е 1 = 2,24 · 10 5 Па
Е 2 = 5· 10 7 Па
Е 3 = 7,5· 10 5 Па

Модуль упругости бельевой резинки зависит от механических свойств резины и оплетающих её нитей, а также от способа переплетения нитей.

Вывод: бельевая резинка очень широко применяется в белье, в детской, спортивной и верхней одежде. Поэтому для её изготовления применяются различные сорта резины, нитей и различные способы их переплетения.

Представитель второй группы:

Наши результаты:

Е 1 = 7,5 · 10 6 Па
Е 1 = 7,5 · 10 6 Па
Е 1 = 7,5 · 10 6 Па

Модуль Юнга одинаков для всех тел любой формы и размеров, изготовленных их данного материала

Представитель третьей группы:

Наши результаты:

Е 1 = 7,9 · 10 7 Па
Е 2 = 7,53 · 10 7 Па
Е 3 = 7,81 · 10 7 Па

Для изготовления эспандеров можно использовать резину разных сортов. Жгут эспандера набирается из отдельных струн. Мы это рассмотрели. Чем больше струн, тем больше площадь поперечного сечения жгута, меньше его абсолютное удлинение. Зная зависимость свойств жгута от его размера и материала, можно изготовить эспандеры для различных физкультурных групп.

Итог урока.

Учитель: Чтобы создавать и применять различные материалы, необходимо знать их механические свойства. Механические свойства материала характеризует модуль упругости. Сегодня вы практически его определили для резины и сделали свои выводы. В чем они заключаются?

Ученик: Я научился определять модуль упругости вещества, оценивать погрешности в своей работе, сделал научные предположения о механических свойствах материалов (в частности, резины) и практической направленности применения этих знаний.

Учащиеся сдают листы контроля.

На дом: § 20-22 повторить.

Лабораторная работа

«Измерение модуля упругости резины»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

2014 г.

Цель работы: экспериментально определить модуль упругости резины.

Оборудование: резиновая лента с петелькой на одном конце и узлом на другом, динамометр (или два лабораторных набора грузов), штатив, линейка с миллиметровыми делениями, тангенциркуль.

Краткие теоретические сведения.

Модуль Юнга характеризует упругие свойства материала. Это постоянная величина, зависящая только от материала и его физического состояния. Поскольку модуль Юнга входит в закон Гука, который справедлив только для упругих деформаций, то и модуль Юнга характеризует свойства вещества только при упругих деформациях.

Модуль Юнга можно определить из закона Гука:

F/S= E D l/l 0 , отсюда E= F l 0 / S D l , где D l= l-l 0 , S=a·b, F=mg.

Задание:

2.Подготовить ответы на контрольные вопросы.

3.Подготовить форму отчёта.

Порядок выполнения работы :

1.Измерить ширину и толщину ленты с помощью штангенциркуля и вычислить площадь ее поперечного сечения S 0 .

3.Укрепить конец ленты с узлом в лапке штатива и, вставив в петельку крючок динамометра (или груза) так, чтобы растянуть ленту на 1-2 см.

4.Снимите нагрузку и измерьте ее начальную длину (от точки закрепления до петельки).

5.Растяните ленту на 2-3 см и измерьте деформирующую силу.

6.Повторите опыт при удлинениях 4 и 6 см.

7.По результатам каждого из опытов вычислите модуль Юнга.

8.Найдите среднее значение модуля Юнга по трем измерениям.

9.Оценить точность произведенных измерений. d = D E /E = D F /F +2D l / l +2D a / a

10.Объясните, с какой целью надо было провести операцию, описанную в п.3.

11.Результаты измерений и вычислений занести в таблицу:

опыта

Начальная длина ленты l 0 , м

Ширина ленты

а , м

Толщина ленты

b , м

Площадь поперечно

го сечения ленты

S , м 2

Дефор

мирующая сила

F , Н

Удлинение

Δ l , м

Модуль Юнга

E , Па

Среднее значение модуля Юнга

E ср, па

Погрешность

d , %

Содержание отчета.

Отчёт должен содержать:

1.Название работы.

2.Цель работы.

3.Перечень необходимого оборудования.

4.Формулы искомых величин и их погрешностей.

5.Таблица с результатами измерений и вычислений.

6.Ответы на контрольные вопросы.

7.Выводы о проведённой работе.

Контрольные вопросы.

1.Что такое модуль Юнга?

2.Что называется пределом упругости?

3.К стальной нити диаметром 2 мм и длиной 1 м подвешен груз массой 200 гр. На сколько удлинится нить, если модуль Юнга для стали равен 2,2* 1011 Па? Каково относительное удлинение нити?

4.Что такое механическое натяжение и в чем оно измеряется?

Список литературы.

1.Жданов Л. С., Жданов Г. Л. Физика (учебник для средних специальных учебных заведений - М. Высшая школа1995) § 13.1-8 (2).

2. Дмитриева В. Ф. Физика (Учебное пособие для средних специальных учебных заведений – М. Высшая школа 2001 г.) § 42-49 (2).

Цель работы: научиться экспериментально определять модуль упругости (модуль Юнга) резины.

Средства обучения:

· оборудование: штатив, набор грузов, резиновый шнур, линейка, динамометр.

· методические указания к выполнению лабораторной работы, калькулятор.

Ход выполнения лабораторной работы

Допуск к выполнению лабораторной работы

Выполните тест:

1. Деформация – изменение…

А. формы и положения в пространстве; Б. формы и размеров тела;

В. Объема и положения в пространстве; Г. нет верного ответа.

2. Деформация, при которой происходит смещение слоев тела относительно друг друга, называется деформацией….

А. сдвига; Б. растяжения; В. изгиба; Г. нет верного ответа.

3. Деформация, которая полностью исчезает после прекращения действия внешних сил, называется….

А. упругой; Б. неупругой; В. пластичной; Г. нет верного ответа.

4. Зависимость физических свойств от направления внутри кристалла, называется…

А. анизотропией;Б. энтропией; В. изотропией;Г. нет верного ответа.

1. На рисунке представлена диаграмма растяжения материала. Укажите область текучести.

А. 0-А;Б. А-В;Г. В-С;Д. С-D.

Ответы занесите в таблицу:

Теоретическая часть

Выведем формулу для вычисления модуля Юнга: закон Гука σ=Е·|ε|, где Е – модуль Юнга. Отсюда (1). Зная, что (2) и (3) и подставив формулы (2) и (3) в формулу (1) получим: (4), где: Е – модуль Юнга, Па; F – вес груза, Н;

х 0 – длина между метками на недеформированном шнуре, м;

S – площадь поперечного сечения шнура в растянутом состоянии, м 2 ;

Δх – абсолютное удлинение шнура, м.

Вычисления и измерения

1. Закрепите резиновый шнур в штативе и нанесите на шнуре две метки А и В. Не растягивая шнур, измерьте расстояние между метками.

2. Подвесьте груз к нижнему концу резинового шнура, предварительно определив его вес. Измерьте расстояние между метками на шнуре и размеры сечения шнура в растянутом состоянии.

3. Выполните те же измерения, подвесив два и три груза.

4. Вычислите модуль Юнга по формуле (4) для каждого опыта.

5. Результаты измерений и вычислений занесите в отчетную таблицу 1



Е 1 = =___________Па,

Е 2 = =___________Па,

Е 3 = =___________Па,

Е ср = =___________Па.

5. Проанализируйте полученный результат Е ср, сравнив его с табличным значением модуля Юнга резины Е табл. =7МПа. Обобщите результаты своей работы. Сделайте вывод по проделанной работе.

Вывод: _______________________________________________________________________

____________________________________________________________________________________________________________________________________________________________

Контрольные вопросы

1. Что такое деформация? Какие виды деформации вам известны?

2. Зависит ли модуль упругости от сечения резинового шнура и его длины?

3. Какая величина измеряется в этой работе с наименьшей погрешностью?

4. Как влияет изменение температуры резинового шнура на величину модуля упругости?

Ответы:

Изм.
Лист
№ докум.
Подпись
Дата
Лист
Лабораторная работа № 4
Лабораторная работа №4
Понравилась статья? Поделиться с друзьями: