Механизмы и системы двигателя. Назначение механизма и их классификация. Структура механизмов. Классификация кинематических пар. Кинематические цепи. Регулирование периодических колебаний скорости

О Г Л А В Л Е Н И Е

Введение …………………………………………………………. .4

Двигатель …………………………………………………………..5

1. Общее устройство и рабочий цикл …………………………….5

1.1. Основные понятия ……………………………………….5

1.2. Механизмы, системы и их назначение …………………7

1.3. Рабочий цикл двигателя …………………………………8

1.4. Основные показатели работы двигателей …………….10

2. Кривошипно-шатунный механизм (КШМ) ………………….12

2.1. Блок двигателя. Цилиндры …………………………….12

2.2. Поршни. Поршневые кольца и пальцы ……………….13

2.3. Шатуны ………………………………………………….15

2.4. Коленчатый вал и маховик …………………………….15

3. Газораспределительный механизм (ГРМ) ……………………18

3.1. Схемы и работа ГРМ ……………………………………18

3.2. Детали газораспределительного механизма …………..20

4. Система питания ………………………………………………..22

4.1. Общие сведения ………………………………………….22

4.2. Элементы системы питания ……………………………..28

4.3. Устройство и работа топливных насосов высокого

давления и форсунок …………………………………….28

5. Система смазки ………………………………………………….32

5.1. Понятия о трении и износе ………………………………32

5.2. Схемы систем смазки. Элементы системы и работа……32

6. Система охлаждения …………………………………………….35

6.1. Общие сведения …………………………………………..35

6.2. Двигатели с жидкостным охлаждением ………………..35

6.3. Двигатели с воздушным охлаждением …………………38

7. Система пуска……………………………………………………39

7.1. Способы пуска …………………………………………...39

7.2. Устройство и работа пусковых двигателей……………..39

Приложения ………………………………………………………...42

Использованная литература ……………………………………….51

В В Е Д Е Н И Е

Пособие “Двигатель“ является разделом дисциплины “Основы устройства колесных и гусеничных машин“ изучение, которой предусмотрено рабочими учебными планами бакалавриата.

На современных машинах наибольшее распространение получили двигатели внутреннего сгоранье (ДВС).

Начало развития двигателя относят к 60 -м годам XIX века (1860 г. - двигатель Ленуара, Франция, а в 1892 году Р. Дизелем был создан двигатель с воспламенением от сжатия).

На протяжение более чем 140 лет рабочий процесс и конструкция двигателей совершенствовались по следующим основным направлениям: улучшались весовые и мощностные показатели; повышались надежность и долговечность; улучшались коэффициент полезного действия и топливная экономичность. Даже за последнее 20-30 лет топливная экономичность дизельных двигателей улучшилась на 20-25 %. Так, например, удельный эффективный расход топлива (g е) двигателя Д-240, Минского тракторного завода составляет 250 г/кВт ч, а лучшие модели двигателей Ярославского моторного завода (ЯМЗ-238 ДЕГ) имеют удельный расход топлива 195 г/кВт ч.

При изучении конструкции двигателей важно подчеркнуть, что показатели работы машинно-тракторного агрегата, во многом, обуславливаются качеством процессов в ДВС и совершенством конструкции его механизмов.

В пособии значительное внимание уделено принципиальным вопросам, классическим схемам, процессам и конструкциям, которые являются общими для наиболее распространенных двигателей.

Особенности конструкций конкретных марок, моделей и модификаций, обучаемые могут почерпнуть из приложений к данному пособию и рекомендованных литературных источников.

ДВИГАТЕЛЬ

ОБЩЕЕ УСТРОЙСТВО И РАБОЧИЙ ЦИКЛ

Основные понятия

На современных колесных и гусеничных машинах установлены поршневые двигатели внутреннего сгорания. В основу действия таких двигателей положено свойство газов расширяться при нагревании.

Двигатель – это машина, преобразующая какой-либо вид энергии в энергию, расходуемую на механическую работу. Двигатели классифицируют по следующим основным признакам:

По способу воспламенения горючей смеси – воспламенением от сжатия (дизели) и принудительным от электрической искры (карбюраторные);

По способу смесеобразования (с внешним – карбюраторные и газовые; с внутренним – дизели);

По способу осуществления рабочего цикла – четырехтактные и двухтактные;

По виду применяемого топлива (бензиновые, газовые и дизели);

По числу цилиндров – одно- и многоцилиндровые;

По способу охлаждения (с воздушным жидкостным охлаждением);

По расположению цилиндров – однорядные, двухрядные и V-образные.

Чтобы понять принцип работы дизеля, рассмотрим его упрощенную схему (рис. 1а). В цилиндр 6 закрытый головкой 1, плотно вставлен поршень 7, который при помощи пальца 8 и шатуна 9 соединен с коленчатым валом 12, имеющим на одном конце тяжелое колесо – маховик 10, который необходим для равномерности вращения вала при работе двигателя. В головке цилиндра имеются впускное и выпускное окна и клапаны 4 и 5. В точно определенные моменты они открываются и закрываются при помощи распределительного механизма, в которой кроме клапанов входят кулачковый вал 14, передаточные детали 16 и распределительные шестерни 13. Топливо (горючая смесь) в цилиндр поступает через форсунку 3 от топливного насоса.

Горючая смесь – это смесь, состоящая из распыленного топлива с воздухом в определенной пропорции.

Рабочая смесь образуется в цилиндре работающего двигателя в результате перемешивания горючей смеси с остаточными газами.

Верхняя мертвая точка (в.м.т.) – это крайнее верхнее положение поршня, когда ось поршневого пальца находится от оси коленчатого вала на наибольшем удалении (рис. 1б).

Нижняя мертвая точка (н.м.т.) – это крайнее нижнее положение поршня, когда ось поршневого пальца находится от оси коленчатого вала на наименьшем удалении (рис. 1в).

1 – головка цилиндра; 2 – коромысло; 3 – форсунка; 4 – выпускной клапан; 5 – впускной клапан; 6 – цилиндр; 7 – поршень; 8 – поршневой палец; 9 – шатун; 10 – маховик; 11 – картер; 12 – коленчатый вал; 13 – шестерня привода распределительного вала; 14 – распределительный вал; 15 – топливный насос; 16 – передаточные детали; 17 – воздухоочиститель.

Рисунок 1 - Схема одноцилиндрового дизеля.

Рабочий ход поршня – это расстояние, пройденное поршнем им от одной мертвой точки до другой. За каждый ход поршня коленчатый вал поворачивается на половину оборота.

Объем камеры сгорания (сжатия) V c – это пространство над поршнем, когда он находится в в.м.т.

Рабочий объем цилиндра – объем цилиндра, освобождаемый поршнем при перемещении от в.м.т. до н.м.т.:

(1)

где V h – рабочий объем цилиндра;

d – диаметр цилиндра;

S – рабочий ход поршня.

Литраж – это рабочий объем всех цилиндров, выраженный в литрах.

Полный объем цилиндра V а – это сумма объема камеры сгорания и рабочего объема цилиндра, т.е. пространство над поршнем, когда он находится в н.м.т.

(2)

Степень сжатия – это число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания.

В современных карбюраторных двигателях степень сжатия колеблется в пределах 8…10, а в дизелях достигает 15…20.

Такт – часть рабочего цикла, происходящая за время движения поршня от одной мертвой точки до другой, т.е. условно принимаем, что такт происходит за один ход поршня.

Двигатели, в которых рабочий цикл совершается за четыре хода (такта) поршня или за два оборота коленчатого вала, называют четырехтактным . Двигатели, в которых рабочий цикл совершается за два хода поршня, или за один оборот коленчатого вала, считают двухтактными .

Механизмы, системы и их назначение

Двигатель внутреннего сгорания состоит из корпусных деталей, кривошипно-шатунного и газораспределительного механизмов, систем питания, охлаждения, смазки и пуска (рис.1а). Дополнительно для облегчения запуска у дизелей предусмотрен декомпрессионный механизм, а карбюраторных двигателей имеется система зажигания для принудительного зажигания смеси при помощи электрической искры.

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала, и наоборот. Он состоит из цилиндра 6, поршня 7 с кольцами, поршневого пальца 8, шатуна 9, коленчатого вала 12 и маховика 10. Сверху цилиндр закрыт головкой 1.

Механизм газораспределения предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и выпуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Он состоит из распределительного вала 14, зубчатых колес 13 привода распределительного вала, толкателей и штанг 16, коромысел 2, клапанов 4 и 5, пружин.

Система питания служит для приготовления горючей смеси и подвода ее е цилиндру (в карбюраторном и газовом двигателе) или наполнения цилиндра воздухом и подачи в него топлива под высоким давлением (в дизеле).

Система охлаждения необходима для поддержания оптимального теплового режима двигателя. Вещество, отводящее от деталей двигателя избыток теплоты, - теплоноситель, может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлаждения, защиты от коррозии и вымывания продуктов изнашивания.

Система пуска – это комплекс взаимодействующих механизмов и систем, обеспечивающих устойчивое начало протекания рабочего цикла в цилиндрах двигателя.

Дизельные двигатели состоят из следующих механизмов и систем:

1. Кривошипно-шатунный механизм.

2. Газораспределительный механизм.

3. Система питания.

4. Смазочная система.

5. Система охлаждения.

6. Система пуска.

Кривошипно-шатунный механизм.

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное движение поршней во вращательное движение коленчатого вала.

Состав КШМ:

1. Блок- картер (рис. 5.).

Блок-картер состоит из двух частей (рис. 5): блока цилиндров, в котором располагаются гильзы и цилиндры и картера, где размещается коленчатый вал.

2. Кривошипно-шатунная группа (рис.6,7):

Коленчатый вал;

Маховик;


Рис.6 Рис.7

Коленчатый вал из опорных коренных шеек 1 (рис.6), шатунных шеек 11, соединяющих их щёк 2. К щёкам прикреплены или отлиты вместе с валом противовесы 12, необходимые для его уравновешивания. В щёках вала проходят косые каналы, по которым масло поступает к шатунным подшипникам. Внутри шатунных шеек выполнены полости В для центробежной очистки масла. Полости закрыты резьбовыми пробками 17. При вращении коленчатого вала механические примеси под действием центробежной силы оседают на стенках полости. Очищенное масло выходит на поверхность шатунной шейки из средней части полости по трубке 18.

На переднем конце коленчатого вала находятся шестерни привода распределительного механизма 13 и масленого насоса 14, шкив 16 привода вентилятора и генератора, а на заднем конце вала закреплён маховик 5.

Коренные и шатунные подшипники выполнены в виде вкладышей 10, изготовленных из сталеалюминевой ленты. Наружная часть ленты стальная, а внутренняя покрыта антифрикционным сплавом – высокооловянистый алюминиевый сплав или свинцовистая бронза. Верхние вкладыши имеют отверстие и кольцевую канавку для прохода масла к шейкам вала.

Шатуны (рис. 7) соединяют поршни с коленчатым валом и передают ему усилие от давления газов, воспринимаемого поршнями. Стержень 3 шатуна двутаврового сечения. В его верхнюю часть запрессовывают бронзовую втулку 2. Нижняя головка шатуна разъёмная. Её отъёмная часть – крышка 6. Верхняя половина головки изготовлена заодно с шатуном.

3. Поршневая группа (рис. 8):

Цилиндры;

Поршневые пальцы;

Поршневые кольца.

Цилиндры являются съёмными деталями. Отдельно изготовленный цилиндр называют гильзой. Внутреннюю поверхность гильзы называют зеркалом. По внутреннему диаметру гильзы сортируют на три размерные группы: Б, С и М (большая, средняя и малая).

Поршни воспринимают и передают на шатун усилие, возникающее от давления газов. Поршень состоит из днища Б, головки В и юбки Г (рис.8.).

На верхней поверхности головки и юбки проточены канавки для компрессионных 6 и маслосъёмных 5 колец. На внутренней стороне юбки имеется два прилива – бобышки 9, в отверстия которых устанавливают поршневой палец для соединения с шатуном.

Поршневые кольца подразделяют на компрессионные и маслосъёмные.

Компрессионные кольца предотвращают прорыв газов из камеры сгорания в картер. Их изготавливают из легированного чугуна. Наружный диаметр кольца в свободном состоянии больше внутреннего диаметра цилиндра. Поэтому часть кольца вырезана, вследствие чего при установке в цилиндр оно пружинит и хорошо прилегает к поверхности.

Маслосъёмные кольца препятствуют проникновению масла из картера в камеру сгорания, снимая излишки масла со стенок цилиндров. Их устанавливают ниже компрессионных колец.

Принцип работы КШМ.

При сгорании газов поршень перемещается, и через поршневой палец и шатун давление передаётся на коленчатый вал. Коленчатый вал воспринимает нагрузки от шатуна через шатунные шейки, опирается и вращается на коренных шейках.

В процессе эксплуатации происходит изнашивание деталей КШМ, вследствие чего работа двигателя становится более шумной, снижается компрессия в цилиндрах и давление масла, увеличивается расход масла в картере и происходит дымление.

Обслуживание кривошипно-шатунного механизма сводится в устранении причин, способствующих его преждевременному износу. Для этого необходимо:

Своевременно менять масло в картере;

Следить за исправной очисткой воздуха от пыли;

Не перегружать двигатель;

Контролировать работу двигателя по приборам и на слух.

Возможные неисправности КШМ.

Неисправность Причина Способ устранения
Двигатель не запускается Слабая компрессия в цилиндрах ввиду износа поршневой группы (гильз, поршней, колец). Заменить изношенные детали.
Двигатель работает с перебоями и не развивает номинальной мощности. Попадание в цилиндры охлаждающей жидкости из системы охлаждения. Устранить попадание охлаждающей жидкости в цилиндры, подтянуть гайки крепления головки цилиндров, заменить прокладку.
Дымный выпуск отработавших газов: голубой дым белый дым Закоксовывание поршневых колец. Износ поршневой группы. Двигатель не прогрет. Попадание охлаждающей жидкости в цилиндры. Вынуть поршни и очистить кольца. Заменить изношенные детали поршневой группы. Прогреть двигатель. Устранить попадание охлаждающей жидкости
Стуки в двигателе: звонкий стук дребезжащий стук глухие стуки при работе двигателя под нагрузкой Изношены поршневые пальцы. Изношены поршни и гильзы Изношены вкладыши и шейки коленчатого вала. Заменить изношенные детали. То же. То же.

1. Назначение механизма и их классификация

Механизм - устройство, предназначенное для выполнения определенных и целесообразных движений.

Классификация:

По назначению:

М-мы двигателей;- передаточные механизмы;

Исполнительные м-мы;- м-мы управления, управления и регулирования;- м-мы счета, измерения, взвешивания

М-мы подачи и сортировки

По конструктивному признаку:

Рычажные;- кулачковые- зубчатые- кулисные

В зависимости от траектории движения звеньев:

Плоские- пространственные

Сложные механические системы (машина, автоматы, вычислительные устройства) – сочетания простых механизмов.

Простой (элементарный) м-зм - м-зм, кот. нельзя разложить на более простые м-змы.

2.Структура механизмов.

Любая машина состоит из деталей.

Деталь - элементарная часть машины, которая выполнена из однородного материала или не может быть разобрана на более простые части (зубчатое колесо, валы, болты).

Различают детали общего (встречаются в большинстве машин) и специального (встреча-ся в спец-х, особых машинах) назначения.

Твёрдые тела, составляющие механизм называют звеньями . Звено может состоять из нескольких деталей, соединённых неподвижно.

Стойка - неподвижное звено.

Совокупность двух звеньев имеющих относительное движение называют кинематической парой .

Условия существования к.п.:

1. Наличие двух звеньев.

2. Непосредственный контакт.

3. Возможность относительного движения.

Коромысло – звено, совершающее вращательное движение.

Бывают вращательные, поступательные к.п.. Звенья могут соприкасаться между собой в точке, по линии или по поверхности (образуя к.п.). К.п. накладывают ограничения на относительное движение звеньев. Эти ограничения называют связями .

3.Классификация кинематических пар.

К.П. - совокупность 2-х звеньев, имеющих относит. движ.

Услов.сущ.к.п.:-наличие 2 звеньев

Непосредств.контакт

Возмож.относ.движ.

Звенья могут соприкос.между собой, образ.к.п.в точке, по линии, по плоскости.

К.п. наклад.огранич.на относит.движение звеньев. Эти огранич.назыв.связями.

К.п. классифиц.по:

1.по виду элементов соприкосновения

если элем.соприкоснов.-поверхность,то к.п.низшая.

если контакт звеньев по линии или в точке,то к.п.высшая.

2.по хар-ру относит.движения звеньев –плоские

Пространственные

3.по числу связей, накладыв.на относит.движ.звеньев:1,2,3,4,5 класса

4.Кинематические цепи .

Сочетания звеньев вх-х в кин-ую пару наз-т кин-ой цепью. КЦ бывают простые, сложные, замкнутые, разомкнутые. Мех-зм – такая КЦ в кот при заданном движ-ии одного или неск-х ведущих звеньев остальные движ-ся вполне опред-ым образом. Все звенья делятся на 3 группы: 1-Группа ведущих звеньев. З-н движ-я в ведущих звеньях обычно задается. 2-Ведомые звенья. З-н движ-я ведомых звеньев зав-т от з-на движ-я ведущих звеньев. 3-Стойка мех-зма. Плоским мех-ом наз такой мех-зм, звенья кот. движ-ся в одной или неск-х // пл-ях. W=3n-2p 5 -p 4 – степень подвижн-ти плоского мех-зма, где W-число степеней подвижности, должно соотв-ть числу ведущих звеньев, n-число подвиж-х звеньев, p 5 число пар 5-го класса (соотв-о p 4).

5. Фрикционные передачи(механизмы)

Передача основана на использовании сил трения

Преимущества:

· Простота, безступенч. регулирование перед. числа

· Плавность бесшумность работы передачи

· Надёжность соединения

· При перегрузке происходит проскальзование катков, это предохраняет механизм от поломки

Недостатки:

· Большие давления на валы и опоры

· Износ рабочих поверхностей

· Непостоянство передаточного числа (из-за проскальзывания катков)

· Небольшая нагрузочная способность до 20 кВт

Передачи классифицируют:

1. По расположению валов

а) циллиндрическая(оси | |)

б) оси пересекаются – передача коническая

в) оси перекрещиваются – передача реечная

Для повышения нагрузочной способности катки изготовляют клинчатыми

2. По характеру силы прижатия катков:

а) с постоянной силой прижатия

б) с переменной силой прижатия

В зависимости от передоваемой нагрузки, чтобы обеспечить непосредственный контакт катков сила прижатия автоматически изменяеться.

3. Передачи делятся на:

а) с условно-постоянным передаточным числом

б) с переменным передаточным числом (вариаторы)

Fтр>F(вн нагр.)

Qf=kF Q=kF/f – сила нажатия

к – кооф. запаса сцепления

f - кооф. трения скольжения

Передачи с плавнорегулируемым передаточным числом назыв вариаторами

По конструкции вариаторы разнообразны

U=x/2, 0

Условная скорость

Передача.

Преимущества:

Плавное изменение передаточного числа => изменение значения угловой скорости ведомого звена и может быть изменено направление вращения ведомого звена.

По конструкции: * с непосредственным контактом, * с промежуточным контактом.

Широко применяется в приборостроении, даже в промышленности.

6. Ремённые передачи: достоинства, недостатки. Характеристика плоскоремённой передачи.

Ремённая передача основана на использовании сил трения, состоит из ведущего и ведомого шкивов, ремня, надетого с натяжением.

«+»: простота конструкции, возможность передачи на большие расстояния: плоский-15м, клиновый-6,смягчает удары, гасит вибрацию,предохраняет то перегрузки.

«-»: большие давления на валы и опоры по сравнению с зубчатой передачей; непостоянство передаточного числа (из-за проскальзывания);низкая долговечность ремней; необходимость применения натяжных устройств.

Передачи классифицируют:

1. По форме профиля ремня

· Плоскоремённая Клиноремённая

· Круглоремённая Зубчатая

2. По скорости вращения

· Тихоходные

· Среднескоростные

· Скоростные

Плоскоремённая передача

Применяется при высоких скоростях вращения, при большом расстоянии между валами (до 15 м).

Виды плоскоременной передачи

· Открытая

· Полуперекрёстная

· Перекрестная

· Перекрестная

К основным параметрам относятся:

α – угол обхвата шкива ремнём (ведущего)

а – межосевое расстояние

L – длина ремня

7.Клиноременная передача, основные параметры. Виды ремней.

Применяется для передачи мощности на большие или малые расстояния, но может передавать момент до 6 м. Нагрузочная способность клиноременной передачи в 3 раза больше плоской (при одинаковых параметрах). Применяется в электродвигателях. Может состоять от одного до 6 ремней. Число ремней зависит от передаваемой мощности. Большое количество ремней не рекомендуется, так как нагрузка между ремнями распределяется неравномерно. Виды плоских ремней. 1.Резино-тканевые ремни: изготовляют 3 типов: А,Б,В. Ремень состоит из нескольких слоев бельтинга с резинов. Прокладками. Обладает достаточной прочностью, гибкостью, но не рекомендуется применять среди кислот и щелочей.2. Ремни из синтетических материалов. Применяют при скоростях до 100 м/с. Высокая гибкость, износоустойчивость.3. Х/б ремни Применяются в тихоходных передачах.4.Кожаные ремни: большая прочность, гибкость, эластичность, стоимость, поэтому ограничен. применение.5. Шерстяные ремни. Ограничен. применение. Клиноременные ремни. Кордотканевые и кордошнуровые. Выпускают несколько типов, отличающ. друг от друга размерами поперечного сечения: О,А,Б,В,Г,Д,Е. При выборе типа ремня учитывается передаваемая мощность.{Приводные ремни. Должны быть достаточно прочными, долговечными, износоустойчивыми и иметь невысокую стоимость.}

Двигатель внутреннего сгорания состоит из корпусных деталей, кривошипно-шатунного и газораспределительного механизмов, систем питания, охлаждения, смазки и пуска (рис.1а). Дополнительно для облегчения запуска у дизелей предусмотрен декомпрессионный механизм, а карбюраторных двигателей имеется система зажигания для принудительного зажигания смеси при помощи электрической искры.

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала, и наоборот. Он состоит из цилиндра 6, поршня 7 с кольцами, поршневого пальца 8, шатуна 9, коленчатого вала 12 и маховика 10. Сверху цилиндр закрыт головкой 1.

Механизм газораспределения предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и выпуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Он состоит из распределительного вала 14, зубчатых колес 13 привода распределительного вала, толкателей и штанг 16, коромысел 2, клапанов 4 и 5, пружин.

Система питания служит для приготовления горючей смеси и подвода ее е цилиндру (в карбюраторном и газовом двигателе) или наполнения цилиндра воздухом и подачи в него топлива под высоким давлением (в дизеле).

Система охлаждения необходима для поддержания оптимального теплового режима двигателя. Вещество, отводящее от деталей двигателя избыток теплоты, - теплоноситель, может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлаждения, защиты от коррозии и вымывания продуктов изнашивания.

Система пуска – это комплекс взаимодействующих механизмов и систем, обеспечивающих устойчивое начало протекания рабочего цикла в цилиндрах двигателя.

1.3 Рабочий цикл двигателя

Рассмотрим рабочий цикл четырехтактного дизеля и, что происходит в одном из цилиндров работающего дизеля (рис. 2).

Рисунок 2 – Схема работы четырехтактного одноцилиндрового двигателя.

Такт впуска (рис. 2а). Поршень движется от в.м.т. к н.м.т., впускной клапан открыт, в цилиндр поступает воздух. Давление в конце такта 0,08…0,09 МПа, температура воздуха 30…50 0 С.

Такт сжатия (рис. 2б). Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т., сжимая воздух.. Вследствие большой степени сжатия (порядка 14…18) давление воздуха в конце этого такта достигает 3,5…4,0 МПа, а температура - (550…750 0 С) превышая температуру самовоспламенения топлива. При положении поршня, близком к в.м.т., в цилиндр через форсунку начинается впрыскивание жидкого топлива, подаваемого насосом высокого давления.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и остаточными газами, образуя рабочую смесь. Большая часть топлива воспламеняется и сгорает. Давление газов достигает 5,5…9,0 МПа, а температура 2000 0 С.

Такт расширения . Оба клапана закрыты. Поршень под давлением расширяющихся газов движется от в.м.т. к н.м.т. (рис. 2в). В начале такта расширения сгорает остальная часть топлива. К концу такта расширения давление газов уменьшается до 0,2…0,3 МПа, температура до 300 0 С.

Такт выпуска . Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рис. 2в) и через открытый выпускной клапан выталкивает отработавшие газы из цилиндра в атмосферу. К концу такта давление газов 0,11…0,12 МПа, температура 65…90 0 С.

Теперь, рассмотрим рабочий цикл двухтактного двигателя. Схема устройства и работы двухтактного карбюраторного двигателя с кривошипно-камерной продувкой изображены на рисунке 3.


1 – свеча зажигания; 2 – поршень; 3 – выпускное окно; 4 – карбюра-

тор; 5 – впускное окно; 6 – кривошипная камера; 7 - продувочный

канал; 8 – цилиндр; 9 – выхлопная труба; 10 – картер.

Рисунок 3 – Схема работы двухтактного двигателя.

В стенке цилиндра 8 двигателей этого типа выполнены три окна: впускное 5, продувочное 7 и выпускное 3. Картер (кривошипная камера 6) двигателя непосредственно с атмосферой не сообщен. Впускное окно 5 соединено с карбюратором 4, продувочное окно – через канал 7 с кривошипной камерой 6 двигателя.

Рабочий цикл двухтактного карбюраторного двигателя происходит следующим образом. Поршень 2 движется от н.м.т. к в.м.т. (рис. 3а), перекрывая в начале хода продувочное окно 7, а затем выпускное 3. После этого в цилиндре 8 начинается сжатие находящейся в нем рабочей смеси. В то же время в кривошипной камере 6 создается разрежение, и как только нижняя кромка поршня откроет впускное окно 5, через него из карбюратора 4 в кривошипную камеру будет засасываться горючая смесь.

При положении поршня 2, близком к в.м.т., сжатая рабочая смесь воспламеняется электрической искрой от свечи 1. При сгорании смеси давление газов резко возрастает. Под давлением газов поршень перемещается к н.м.т. (рис. 3б). Как только он закроет впускное окно 5, в кривошипной камере 6 начнется сжатие ранее поступившей сюда горючей смеси.

В конце хода поршень открывает выпускное 3 (рис. 3в), а затем и продувочное 7 окна. Через открытое выпускное окно отработавшие газы с большой скоростью выходят в атмосферу. Давление газов в цилиндре быстро понижается. К моменту открытия продувочного окна давление сжатой горючей смеси в кривошипной камере становится выше, чем давление отработавших газов в цилиндре. Поэтому горючая смесь из кривошипной камеры по каналу 7 поступает в цилиндр и, заполняя его, выталкивает остатки отработавших газов через выпускное окно наружу.

В дальнейшем все процессы повторяются в такой же последовательности.

Понравилась статья? Поделиться с друзьями: