Блокинг - генераторы. Принцип работы, действия. Применение Самодельный мощный блокинг генератор на полевом транзисторе

В этой статье я поведаю вам о том, что такое блокинг-генератор .

Блокинг-генератор - это генератор импульсов сравнительно небольшой длительности и большого периода. Он работает благодаря трансформаторной обратной связи . Из-за простоты блокинг-генератор широко применяют в компактных преобразователях напряжения (например в каждой второй схеме электронной зажигалки можно встретить эту схему).

Вот это блокинг-генератор(одна из многих вариаций этой схемы):

Как видите, он реально прост в сборке. Самая сложная часть в нем - это трансформатор.Но обо всем по порядку.

1) Принцип работы

Сначала обмотка 2 работает как "резистор", т.е. через нее и резистор протекает ток, который начинает открывать транзистор.Открывание транзистора приводит к появлению тока в обмотке 1, а это в свою очередь приводит к появлению напряжения на обмотке 2, т.е. напряжение на базе транзистора увеличивается еще, он открывается еще больше, и так происходит до тех пор, пока сердечник или транзистор не войдет в насыщение. Когда это произошло, ток через обмотку 1 начинает уменьшаться, следовательно напряжение на обмотке 2 меняет полярность, что приводит к закрыванию транзистора.Все, цикл замкнулся!

2) Детали

Трансформатор обмотка 1 обычно в 2 раза больше обмотки 2, а число витков и диаметр провода подбираются в зависимости от напряжения на обмотке 3 и тока через нее.

Резистор обычно берут в пределах 1кОм - 4,7кОм.

Транзистор подойдет почти любой.

3) Тест

Сначала соберем базовую схему генератора. Трансформатор вот такой от балласта энергосберегающей лампы:

На нем я намотал сначала обмотку 2 (18 витков проводом 0,4мм)

Изолировал ее (подойдет обычная изолента)

А потом намотал и обмотку 1 (36 витков тем же проводом, что и 2-ую)

И наконец, вставил сердечник и зафиксировал его той же изолентой

На этом трансформатор готов.

Транзистор я выбрал мощный: кт805, потому что в обмотке всего 36 витков не самого тонкого провода(малое сопротивление).

Резистор 2,2кОм.

Вот что у меня в итоге получилось:

Питание, как вы поняли, я буду брать от кроны.

Итак, с транзистором кт805, резистором 2,2кОм и обмоткой 1 в 2 раза больше обмотки 2, осциллограмма напряжения между коллектором и эмиттером выглядит так:

Амплитуда 60В, частота около 170кГц.

Теперь поставим резистор на 4,7кОм. Осциллограмма выглядит так:

Амплитуда около 10В, частота такая же.

Поставим теперь резистор 1кОм:

Амплитуда 120В, частота около 140кГц.

Теперь поставим обратно резистор 2,2кОм, и поменяем местами обмотки:

Амплитуда 80В, частота около 250кГц.

4) Вывод

Чем больше коэффициент обратной связи, тем быстрее нарастает сигнал, и частота выше.(чем меньше резистор, и больше соотношение число витков обмотки 2/число витков обмотки 1, тем больше коэффициент ОС).Еще на ОС влияет коэффициент усиления транзистора.

5) Практическая польза

Вы наверняка заметили, что я ни слова не сказал про обмотку 3. Она нужна для того, чтобы снять выходное напряжение.

Давайте посмотрим что будет, если намотать в обмотку 3 100 витков провода 0,08мм:

Сначала нам, конечно, нужно домотать трансформатор. Изолируем в прошлом последний слой:

Теперь наматываем 100 витков провода 0,08. Собираем сердечник. НА ВЫХОД ЦЕПЛЯЕМ ДИОД (можно любой с обратным напряжением не менее 200В. Например я взял дешевый и распространенный 1n4007). Спаиваем схему:

Диод нужен для отсекания отрицательных выбросов. Смотрим осциллограмму на выходе:

Постоянная составляющая 50В, импульсы амплитудой 50В. Чтобы убрать импульсную составляющую, поставим конденсатор на выходе. Подойдет 0,1мкФ:

Осциллограма:

Постоянное напряжение амплитудой 100В.

При приближении:

Небольшие колебания амплитудой 50мВ.

И наконец, полная схема:

Если генерации нет, впаяйте параллельно резистору конденсатор на пару микрофарад.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Биполярный транзистор

КТ805А

1 В блокнот
Выпрямительный диод

1N4007

1 В блокнот
Резистор

2.2 кОм

1

Блокинг-генератор применяется в электротехнике и электронике для возникновения внушительных, но коротких во времени сигналов-импульсов с резким фронтом и существенным отношением периода повторения импульсов к их длительности (скважность). В настоящем применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Принцип работы

По своей сути, блокинг генератор является усилителем (генератором), собранным на базе транзисторов, расположенных в один каскад. Область применения узка: источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников.

Усилитель, используемый для изготовления блокинг-генератора, находится в открытом положении исключительно в период формирования сигнала-импульса. На всё остальное время – закрывается. Отсюда следует, что при большой величине отношения периода повторения импульсов к их длительности усилительный элемент находится в открытом положении существенно меньшее количество времени, чем в закрытом. У усилителя существует тепловой режим. В данном случае он напрямую связан со средней мощностью, отдающейся коллектором. За счёт высокой величины скважности при работе устройства получают существенную мощность в течение сигнала малой мощности.

Существенная величина скважности блокинг-генератора позволяет ему работать в экономичном режиме, т.к. энергия требуется усилителю только во время открытого положения (время формирования сигнала). Основные режимы работы: автоколебательный и ждущий. Рассмотрим их подробнее.

Чаще всего блокинг-генератор собирается на усилительных элементах – транзисторах, включаемых по двум основным схемам:

  • с общим эмиттером;
  • с общей базой.

Первая встречается чаще, т.к., имея меньшую длительность фронта, есть возможность сгенерировать предпочтительную форму сигналов. Вторая схема менее подвержена колебаниям характеристик усилителей.

Рабочий процесс рассматриваемого устройства делится на 2 стадии:

  • закрытое положение транзистора, занимает основное время периода колебаний;
  • транзистор в открытом положении, сигнал-импульс проходит стадию формирования.

У конденсатора С1 происходит заряд током источника в течение образования импульса. За счёт этого С1 обеспечивает закрытое положение усилительного элемента. Во время данной стадии у конденсатора С1 происходит неспешная разрядка через существенное сопротивление резистора R1. При этом на базе диода VT1 создается около нулевой потенциал, что не позволяет ему открыться.

При достижении порога напряжения открытия у усилительного элемента происходит процесс открывания, и сквозь обмотку I, называющуюся коллекторной, трансформатора Т потечёт ток. В этот момент в основной или базовой обмотке II происходит индукция потенциала. Полярность должна быть такова, чтобы образующееся на базе транзистора напряжение имело положительную полярность. В случае ошибочного подключения обмоток трансформатора устройство генерировать сигналы не будет. В этом случае требуется переподключить концы одной из обмоток. Блокинг-генератор заработает.

Важно! Обвальное развитие процесса открытия транзистора имеет название прямого блокинг-процесса.

В I обмотке трансформатора появляется положительное напряжение, что ведёт к возрастанию различных токов и, следовательно, продолжению снижения напряжения коллектора и базы усилителя. Совершается резкое нарастание коллекторного тока и напряжения на усилительном элементе. В следующий момент напряжение падает почти до нуля, и устройство переходит в режим насыщения.

Важно! Обвальное развитие процесса закрытия транзистора имеет название обратного блокинг-процесса.

Открытие усилителя происходит практически мгновенно, поэтому в течение всего этого времени потенциал конденсатора С1 и величина энергии в трансформаторе практически не претерпевают изменений. Фронт импульса сформирован. Происходит образование вершины импульса, конденсатор С1 начинает заряжаться.

Выход усилительного элемента из режима насыщения означает, что ток у коллектора опять начинает зависеть от количества накопленного в базе транзистора заряда, а базовый ток уменьшается. Усилительные свойства транзистора начинают восстановление. В этот момент в первичной обмотке трансформатора формируется отрицательное относительно транзистора напряжение. Данный процесс ведёт к продолжению уменьшения коллекторного тока. Происходит формирование среза импульса.

Ти » (3 – 5) R1С1 – таким выражением характеризуется автоколебательный режим.

Ждущий режим

При ждущем режиме работы рассматриваемого устройства генерация сигналов происходит только с помощью внешнего воздействия – на вход необходимо подать произвольные запускающие импульсы.

В начальном состоянии усилительный элемент закрывается отрицательным смещением на базе, и лавинообразное развитие процесса открытия транзистора начнется исключительно только после подачи противоположного по знаку импульса соответствующей амплитуды на базу.

Появление импульса происходит по полной аналогии автоколебательного режима, рассмотренного выше. Конденсатор С1 разряжается до изначального напряжения базы. Далее транзистор остается в закрытом состоянии до появления последующего запускающего импульса. Длительность сигналов, а также их форма, исходящих от рассматриваемого устройства, находятся в полной зависимости от параметров собранной схемы.

Чтобы цепь запуска не оказывала никакого воздействия на работу находящего в ждущем режиме блокинг-генератора, в представленной схеме присутствует специальный разделительный диод VD2. Его задачей является закрытие сразу за окончанием процесса открывания транзистора. Это действие обрывает связь между внешним источником и интересующим нас устройством. Допускается добавлять в расчёт представленной схемы эмиттерный повторитель.

Таким образом, подытоживаем принцип работы блокинг генератора на полевом транзисторе: если при исчезновении напряжения на базе транзистора условия, требуемые для повторения цикла без внешнего воздействия, не исполняются, то этот режим работы называется ждущим. Если же при исчезновении напряжения там же начинается новый цикл по образованию нового импульса без привлечения внешнего источника, то режим работы схемы автоколебательный.

Видео

Для тех из вас, кто не знает, о чем идёт речь, блокинг генератор — это крошечная схема с самозапиткой, которая позволит вам зажигать светодиоды от старых батареек, напряжение которых упало вплоть до 0.5 Вольт.

Вы думаете, что батарейка уже отжила свое? Подключите её к блокинг генератору и выжмите из неё всё до последней капли энергии своими руками!

Шаг 1: Компоненты и инструмент

Для проекта понадобится всего несколько вещей, которые видны на фотографии, но для тех из вас, кто любит читать, я приложу вариант списка в текстовом виде:

  • Паяльник
  • Припой
  • Светодиод
  • Транзистор 2N3904 или его эквивалент
  • Резистор 1К
  • Тороидная бусина
  • Тонкий провод, двух цветов

Если вы найдёте транзистор 2N4401 или BC337, то светодиод будет гореть ярче, так как они рассчитаны под большую силу тока.

Шаг 2: Обмотайте тороид проводом




Сначала нужно обмотать проводом тороид. Свой я нашел в старом блоке питания. Тороиды похожи по форме на пончик и притягиваются магнитом.

Возьмите два провода, скрутите вместе их концы (вам необязательно делать так, но это немного упростит обмотку тороида).

Пропустите скрученные концы через тороид, затем возьмите два других (нескрученных конца) и обмотайте вокруг тороида. Не перекручивайте провода, убедитесь, что по всей обмотке нет места, где два повода с одинаковым цветом находятся рядом. В идеале нужно сделать 8-11 витков, находящихся на одинаковом расстоянии друг от друга и плотно прилегающих к тороиду. Как только вы завершите обмотку, отрежьте излишнюю длину провода, оставив около 5 см для соединения с другими компонентами схемы.

Снимите с концов проводов немного изоляции, затем возьмите по одному проводу с каждой стороны, убедившись что они разных цветов. Скрутите их и ваш тороид готов.

Шаг 3: Припаиваем компоненты







Пришло время спаять всё в одно устройство. Вы можете поместить всё на макетную плату, но в инструкции я решил собрать всё на коленке. Можете следовать текстовой инструкции или спаять всё по картинкам — там всё отлично отображено.

Сначала возьмите два внешних контакта транзистора и слегка отогните их наружу, а средний загните внутрь. Контакты светодиода также согните наружу. Это необязательный шаг, но он поможет проще спаять компоненты.

Возьмите один из проводов тороида, которые остались несоединёнными (всё правильно, один из нескрученных вместе проводов). Припаяйте его к одной из сторон резистора. Припаяйте другой конец резистора к среднему контакту транзистора.

Возьмите второй одиночный провод тороида и припаяйте его к коллектору транзистора. Припаяйте положительный контакт светодиода также к коллектору, а отрицательный контакт к эмиттеру.

Всё, что осталось сделать — это припаять удлинительный провод к отрицательному контакту светодиода. Возьмите кусок провода, который у вас был до этого, и припаяйте его к эмиттеру транзистора.

Шаг 4: Пробуем девайс в действии


Всё готово! Вы завершили ваш блокинг генератор на одном транзисторе. Приложите скрученные провода тороида к положительному контакту батарейки, а удлинительный провод к отрицательному контакту. Если всё собрано правильно, то светодиод загорится. Если светодиод не загорится, то попробуйте обмотать тороид более тонким проводом.

Блокинг-генератор по принципу построения представляет собой однокаскадный транзисторный усилитель с глубокой положительной обратной связью, осуществляемой импульсным трансформатором. Блокинг-генераторы применяют в качестве мощных источников коротких импульсов (длительностью от сотых долей до десятков микросекунд), имеющих большую скважность (больше 10) и высокую крутизну фронтов. На основе блокинг-генераторов часто выполняют формирователи управляющих импульсов в системах цифрового действия, они находят применение в схемах формирования пилообразного тока в устройствах электромагнитной развертки электронного луча по экрану электронно-лучевых приборов. Блокинг-генераторы могут работать в различных режимах: ждущем, автоколебательном, режимах синхронизации и деления частоты.

В качестве сердечника импульсного трансформатора используют ненасыщающиеся сердечники из магнитомягкого материала, т.е. сердечники с прямоугольной петлей гистерезиса. Наличие трансформатора в схеме блокинг-генератора позволяет осуществить электрическую развязку цепи нагрузки и источника питания, легко обеспечить согласование с нагрузкой обеспечить одновременное получение нескольких импульсов одинаковой или разной полярности и разной амплитуды.

Рис.1.31. Принципиальная (а) и эквивалентная (б) схемы блокинг-генератора

Рассмотрим работу ждущего блокинг-генератора на примере схемы, приведенной на рис.1.31,а. Она выполнена на транзисторе VT, включенном по схеме с общим эммитером, и трансформаторе T. Цепь положительной обратной связи осуществлена с помощью вторичной обмотки W б трансформатора, конденсатора C и резистора R. Резистор R б создает контур разряда конденсатора, когда транзистор закрыт. Выходной сигнал может быть снят либо непосредственно с коллектора транзистора, либо с дополнительной нагрузочной обмотки W н трансформатора; цепь из диода VD 1 и резистора R 1 защищает транзистор от перенапряжений.

B = ·H, (1.62)

где  - магнитная проницаемость материала сердечника, являющаяся, в свою очередь, функцией напряженности  = f(H).

Для упрощения рассмотрения в дальнейшем будем считать =const. Намагничивающий ток i  создает магнитный поток, потокосцепление которого с обмоткой коллекторной цепи W к определяется из уравнения

Y = L к ·i  , (1.63)

где L к - индуктивность обмотки W к; i  =(i к -i б "-i н ") - намагничивающий ток; i б "=n б ·i б - ток базовой обмотки W б, приведенный к первичной обмотке W к;n б =W б /W к; i н "=i н ·n н - ток нагрузки обмотки W н, приведенный к первичной обмотке W к; n н =W н /W к.

Работа схемы. В исходном состоянии транзистор заперт отрицательным напряжением смещения Е б, приложенным к цепи база-эмиттер транзистора. Блокинг-генератор находится в состоянии устойчивого равновесия, из которого он может быть выведен подачей в цепь базы транзистора запускающего импульса положительной полярности. При отпирании транзистора начинает действовать положительная обратная связь, т.е. возникает регенеративный процесс лавинообразного роста коллекторного тока i к и базового тока i б. В результате этого процесса транзистор входит в режим насыщения. Начинается процесс формирования переднего фронта импульса, по окончании которого формируется вершина импульса.

В этой стадии практически все напряжение питания Е к приложено к обмотке W к трансформатора и ток этой обмотки будет непрерывно увеличиваться (dY/dt=const при L к =const). Следовательно, ток коллектора будет непрерывно нарастать. В то же время ток базы непрерывно уменьшается за счет зарядки конденсатора C через эмиттерный переход транзистора, причем напряжение обмотки W б в этот промежуток времени можно считать постоянным.

В конечном итоге в результате увеличения тока коллектора и уменьшения тока базы транзистор из режима насыщения выходит в активный режим и действие положительной обратной связи восстанавливается. Возникает регенеративный процесс обратного опрокидывания, в течении которого ток коллектора падает до нуля, а напряжение на коллекторе становится равным Е к. На этом цикл кончается и блокинг-генератор возвращается в исходное состояние, из которого он может быть выведен только следующим запускающим импульсом.

Таким образом за рабочий цикл блокинг-генератора формируется короткий импульс довольно большой мощности.

Исходное состояние. В ждущем режиме в исходном состоянии транзистор заперт отрицательным напряжением -Е б, в цепи базы протекает ток I б (0) = -I ко. Конденсатор С заряжен до напряжения

U c (0) = -E б + I ко ·R б, (1.64)

Напряжение на всех трех обмотках трансформатора равно нулю, а в сердечнике трансформатора имеется небольшой постоянный магнитный поток, обусловленный намагничивающей силой

F 1 = I ко ·W к, (1.65)

Запуск и опрокидывание. В момент времени t 1 (рис.1.32) поступает запускающий импульс e зап положительной полярности, который подается в цепь базы транзистора. Транзистор отпирается, что приводит в действие цепь положительной ОС. Ток коллектора растет, вызывая рост базового тока i б. Так как емкость конденсатора C достаточно велика, напряжение на ней практически не меняется в течении всего процесса регенерации. Можно считать, что ток заряда конденсатора C равен i б, т.к. сопротивление резистора R много больше входного сопротивления открытого транзистора.

Рис.1.32. Временные диаграммы токов и напряжений блокинг-генератора

Развитие регенеративного процесса отпирания транзистора возможно, если в схеме создаются условия для увеличения тока базы за счет положительной обратной связи. Это означает, что цепь обратной связи должна обеспечить соотношение для токов транзистора, при котором


,
(1.66)

где ток коллектора

i к = i б ·n б + i н ·n н, (1.67)

Если принять на этапе регенеративного процесса напряжение на коллекторной обмотке равным U к, то


,
(1.68)

В результате подстановки выражения (1.67) в (1.66) с учетом (1.68) находим условие, необходимое для развития прямого регенеративного (блокинг) процесса в схеме

, (1.69)

Регенеративный процесс опрокидывания длится до тех пор, пока действует положительная ОС и транзистор находится в активной области. В момент времени t 2 из-за уменьшения коллекторного напряжения U к и роста базового тока i б транзистор попадает в режим насыщения, при котором U к  0, U 1  Е к.

Формирование вершины импульса. При работе транзистора в режиме насыщения формируется вершина импульса (интервал времени t 2 -t 3). При этом к первичной обмотке трансформатора приложено практически все напряжение Е к, а в обмотках W б и W н индуцируются ЭДС, равные U б n б ·Е к и U н n н ·Е к. Токи i  и i к нарастают во времени, что видно из диаграммы (рис.1.32). Ток базы также изменяется во времени из-за зарядки конденсатора C:

i б (t) = i б (t 2)e -t/t , (1.70)


,
(1.71)

r вхн  входное сопротивление насыщенного транзистора;

t=C·(R+r вхн)  постоянная времени зарядной цепи.

В выражении (1.71) не учтено активное сопротивление базовой обмотки трансформатора.

Через коллекторную обмотку и транзистор протекает ток (рис.1.31,б), равный сумме трех составляющих:

i к = i  + i б "+ i н ", (1.72)

где i  -- ток намагничивания, i б "=i б ·n б; i н "=Е к ·n н 2 /R н  приведенные к коллекторной обмотке токи базы и нагрузки.

Ток намагничивания i  создается под воздействием приложенного к коллекторной обмотке W к напряжения Е к и обусловлен перемещением рабочей точки по кривой намагничивания сердечника трансформатора из точки O" в направлении к точке M (рис.1.22). Характер изменения во времени тока i  зависит от вида кривой намагничивания и числа витков коллекторной обмотки (ее индуктивности L) и обычно близок к линейному закону. Для тока будет действительно уравнение L·di  /dt=Е к, откуда находим

,
, (1.73)

где t в - длительность вершины импульса.

Временные диаграммы изменения составляющих тока коллектора согласно выражения (1.72) показаны на рис.1.33.

Рис.1.33. Временные диаграммы изменения составляющих тока коллектора

С увеличением тока коллектора происходит рассасывание избыточных неосновных носителей заряда, накопленных в базе. С уменьшением тока базы этот заряд также уменьшается. В момент времени t 3 , когда выполняется условие

i к (t 3) = ·i б (t 3), (1.74)

транзистор выходит из режима насыщения в активную область и формирование вершины импульса заканчивается.

Длительность вершины выходного импульса блокинг-генератора можно найти из условия (1.74), которое с учетом выражений (1.70...1.73) принимает вид

, (1.75)

Для решения этого уравнения разложим экспоненту e -t/  в степенной ряд для t/ << 1:


,
(1.76)

Ограничиваясь первыми двумя членами ряда (1.76) из (1.75), получаем выражение для длительности вершины импульса


,
(1.77)

Обычно n б =1/3...1/6, тогда -n б  и формула (1.77) принимает вид


,
(1.78)

Обратное опрокидывание и восстановление исходного состояния. В момент t 3 выхода транзистора в активную область вступает в действие положительная ОС и возникает регенеративный процесс обратного опрокидывания. При этом в течении процесса регенерации можно считать, что заряд конденсатора С остается постоянным и U c (t 3)=U c (t 4). Уменьшение тока i к приводит к уменьшению U б, а значит и тока базы i б. В итоге происходит дальнейшее уменьшение тока i к. Заряд, накопленный в базе, быстро рассасывается. Транзистор запирается, и токи i к и i б становятся равными I ко.

Из временной диаграммы тока базы (рис.1.32) видно, что во время обратного опрокидывания i б имеет обратное направление и значение его во много раз больше I ко. Это обусловлено наличием избыточного заряда в базе насыщенного транзистора, носители которой в момент изменения приложенного напряжения на обратное изменяют ток базы транзистора.

С момента времени t 4 начинается процесс восстановления исходного состояния, который связан с рассеиванием электромагнитной энергии, запасенной в сердечнике трансформатора, и с разрядом конденсатора C. Разряд конденсатора С происходит по цепи W б - R - R б - E б. Процесс восстановления заканчивается в момент времени, когда напряжение на конденсаторе достигнет установившегося значения U c (0).

Время восстановления можно находить из упрощенного выражения

t вос  (3...5)·С·(R + R б), (1.79)

Для перевода блокинг-генератора в автоколебательный режим на схему подают положительное напряжение смещения (рис.1.34,а).

Рис.1.34. Схема блокинг-генератора в автоколебательном режиме (а),

диаграмма изменения напряжения на базе транзистора (б).

Процессы, протекающие в автоколебательном режиме работы блокинг-генератора, аналогичны процессам в ждущем режиме. Начнем рассмотрение этого режима с момента запирания транзистора Т. В этот момент конденсатор С заряжен до некоторого максимального напряжения U см, минус которого приложен к базе транзистора (рис.1.34,б). Конденсатор разряжается через обмотку W б, резистор R б и источник смещения Е б. При этом напряжение на базе уменьшается стремясь к уровню:

U бэ () = Е б + I ко ·R б  Е б, (1.80)

В определенный момент времени это напряжение достигает значения U пор >0, при котором транзистор отпирается. Процесс формирования импульса повторяется. По окончании его конденсатор С снова оказывается заряженным до напряжения U см.

Длительность импульса определяется как и в ждущем режиме по выражению (1.78).

Длительность паузы


, (1.81)

где U см  n б ·Е к, R=0.

Тогда период автоколебаний T = t в + t п.

Введение

Электронная вычислительная техника - сравнительно молодое научно-техническое направление, но она оказывает самое революционизирующее воздействие на все области науки и техники, на все стороны жизни общества. Характерно постоянное развитие элементной базы ЭВМ, которая в настоящее время получила название схемотехники ЭВМ. Элементная база развивается очень быстро; появляются новые типы логических схем, модифицируются существующие. Существует множество различных логических ИС: логические элементы, регистры, сумматоры, АЛУ, дешифраторы, мультиплексоры, счетчики, делители частоты, триггеры, генераторы и усилители постоянного тока. Именно о них пойдет речь в данной работе.

Описание схемы устройства блокинг-генератора

Блокинг-генератор - это автоколебательная система, генерирующая кратковременные импульсы большой скважности. Схема блокинг-генератора представляет собой однокаскадный усилитель с глубокой обратной связью. Для обеспечения обратной связи используются импульсные трансформаторы.

Благодаря такой связи и высоким ключевым качествам транзистора блокинг-генератор, построенный даже на маломощном транзисторе, может генерировать мощные импульсы.

Импульсы блокинг-генератора обладают весьма короткими фронтами и могут иметь длительность от долей микросекунды до долей миллисекунды. Блокинг-генератор позволяет осуществлять трансформаторную связь с нагрузкой, что во многих случаях очень важно.

ОПИСАНИЕ СХЕМЫ

Рис.1.

В цепь коллектора включена обмотка трансформатора, осуществляющая обратную связь с цепью базы транзистора путем включения в эту цепь обмотки.

Кроме того в цепь базы включены конденсатор С и резистор смещения R 1 , величины которых определяют длительность рабочего импульса t u и период автоколебаний н включена с помощью специальной обмотки трансформатора. На базу транзистора подано отпирающее напряжение.

генератор автоколебательный режим электрический

Расчет схемы блокинг-генератора

Электрический расчет

Выбираем тип транзистора, исходя из условий быстродействия и надежности.

а) Для обеспечения малых длительностей фронта и спада выходного импульса необходимо, чтобы:

При выполнении этого условия величины получаются порядка нескольких.

б) Допустимое напряжение на коллекторе транзистора U кб. доп должно удовлетворять соотношению U кб. доп? (E к + ? U кm) (1 + n б). Обычно значение n б лежит в пределах 0,1 - 0,7.

Так как выброс сильно искажает форму выходного сигнала блокинг-генератора, то амплитуда выброса, как правило, не должна превышать 10-30% от амплитуды коллекторного напряжения:

U к = U" вых = U вых / n u, т.е. ? U кm = (0,1 0,3) U к

Напряжение питания выбираем, исходя из равенства E к = (1,1 1,2) U вых / n и = 25 В.

Положим n н = 1. Тогда U кб. доп = (1,2 U вых + 0,3 U вых) 1,7 = 51 В. Исходя из полученных значений f б и U кб. доп, выбираем транзистор типа КТ803А , для которого I кбо <= 50 мА, f б = 10 МГц, U кб. доп <= 60 В, I к. доп = 5 А, C к <= 250 пФ. Определим оптимальное значение коэффициента трансформации n б = 0,4 из формулы:

Длительность фронтов найдем по формуле:

Определяем сопротивление резистора R, приняв по внимание следующее:

а) Во время формирования импульса цепь резистора R должна мало влиять на ток в базовой цепи транзистора. Для этого необходимо, чтобы R >> r" б.

б) Протекание обратного тока закрытого транзистора через резистор R не должно создавать заметного падения напряжения, т.е. R << E б / (10 I КБO max).

Положив E б = 1 В, найдем, что величина R = 3 кОм удовлетворяет обоим условиям. При заданной скважности находим требуемую длительность паузы:

Проверим условие E б >> I КБ0max R и положив?U кт << E б, определяем емкость конденсатора C из формулы:

Тогда, подключив добавочный резистор с сопротивлением R д = 200 Ом, можно по формуле определить индуктивность трансформатора, необходимую для формирования импульса длительностью 1 мкс:

Проверим условие отсутствия влияния нагрузки на длительность импульса по формуле:

Таким образом, нагрузка мало влияет на длительность импульса.

Процесс формирования выброса импульса блокинг-генератора будет апериодическим, если выполняется условие

Определив С 0 = 20 пФ на основании формулы:

убедимся, что условие выполняется при данных значениях L и С 0, т. е выброс апериодически спадает до нуля. Амплитуда выброса, согласно формуле будет равняться:

Длительность выброса

Для транзистора КТ803А такая амплитуда выброса недопустима, так как:

Следовательно, необходима цепь из диода Д ш и резистора R ш, уменьшающая амплитуду выброса до значения:

Вычислим допустимую амплитуду обратного выброса:

Максимальное сопротивление шунтирующего резистора найдем из формулы:

откуда R ш max = 0,75 кОм.

Выбранный тип диода Д ш должен удовлетворять условиям:

I д max = I м max = < I д. доп,

| U д. доп | > | E к |.

Выбираем диод типа Д9Г.

Выбор и обоснование элементной базы

На основании приведенного выше расчета выбираем элементы (для схемы электрической принципиальной):

В качестве транзистора VТ1 был взят высокочастотный биполярный транзистор КТ803A , со следующими характеристиками:

· Структура: n-p-n;

· Граничная частота коэффициента передачи тока: 10 МГц;

· Статический коэффициент передачи тока: 10-70;

· Начальный ток коллектора не более: 5 мА;

· Максимально допустимое напряжение коллектор-эмиттер: 80 В;

· Максимально допустимый постоянный ток коллектора: 10 А;

· Максимально допустима рассеивающая мощность коллектора: 60 Вт.

В соответствии с рассчитанной емкостью схемы, подбираем следующий конденсатор:

С 1 = К10-17-2-25 В-160 пФ5%,

удовлетворяющий нашим требованиям и расчетам.

В соответствии с рассчитанными номиналами резисторов имеем:

R 1 = 2 кОм: МЛТ-0,125-2кОм2%;

R 2 = 1 кОм: МЛТ-0,5-1кОм2%;

R 3 = 16 кОм: МЛТ-0,125-16кОм2%;

В соответствии с рассчитанным номиналом резистора нагрузки, в качестве диода VD1 выбираем диод:

VD1 = Д9Г ГОСТ 14342-75.

Понравилась статья? Поделиться с друзьями: