Основные понятия раздела детали машин. Словарь автомобильных терминов. На каких предметах базируется курс «Детали машин»

Данный словарь полезен начинающим автолюбителям и водителям с опытом. В нем найдете информацию об основных узлах автомобиля и их краткое определение.

Автомобильный словарь

АВТОМОБИЛЬ - транспортная машина, приводимая в движение собственным двигателем (внутреннего сгорания , электрическим). Вращение от двигателя передается коробке передач и колесам. Различают автомобили пассажирские (легковые и автобусы) и грузовые.

АККУМУЛЯТОР - устройство для накопления энергии с целью ее последующего использования. Аккумулятор преобразует электрическую энергию в химическую и по мере надобности обеспечивает обратное преобразование; используют как автономный источник электроэнергии на автомобилях.

АКСЕЛЕРАТОР (педаль "газа") - регулятор количества горючей смеси, поступающей в цилиндры двигателя внутреннего сгорания. Предназначен для изменения частоты вращения двигателя.

АМОРТИЗАТОР - устройство для смягчения ударов в подвеске автомобилей. В амортизаторе используют пружины, торсионы, резиновые элементы, а также жидкости и газы.

БАМПЕР - энергопоглощающее устройство автомобиля (на случай легкого удара), расположенного спереди и сзади.

ВОЗДУШНЫЙ ФИЛЬТР - служит для очистки от пыли (обработки) воздуха, используемого в двигателях.

ГЕНЕРАТОР - устройство, вырабатывающее электрическую энергию либо создающие электромагнитные колебания и импульсы.

ГЛАВНАЯ ПЕРЕДАЧА - зубчатый механизм трансмиссии автомобилей, служащий для передачи и увеличения крутящего момента от карданного вала к ведущим колесам, а следовательно, и для увеличения тягового усилия.

ДВИГАТЕЛЬ внутреннего сгорания - источник механической энергии, необходимый для движения автомобиля. В классическом двигателе тепловая энергия, получаемая при сгорании топлива в его цилиндрах, преобразуется в механическую работу. Существуют бензиновые и дизельные моторы.

ДЕТОНАЦИЯ - наблюдается в двигателях внутреннего сгорания с искровым зажиганием и возникает в результате образования и накопления в топливном заряде органических перекисей. Если при этом достигается некоторая критическая концентрация, то происходит детонация, характеризующаяся необычно высокой скоростью распространения пламени и возникновением ударных волн. Детонация проявляется в металлических "стуках", дымном выхлопе и перегреве двигателя и ведёт к пригоранию колец, поршней и клапанов, разрушению подшипников, потере мощности двигателя.

ДИФФЕРЕНЦИАЛ - обеспечивает вращение ведущих колёс с разными относительными скоростями при прохождении кривых участков пути.

ЖИКЛЕР - калиброванное отверстие для дозирования подачи топлива или воздуха. В технической литературе жиклерами называют детали карбюратора с калиброванными отверстиями. Различают жиклеры: топливный, воздушный, главный, компенсационный, холостого хода. Жиклеры оценивают их пропускной способностью (производительностью), т. е. количеством жидкости, которое может пройти через калиброванное отверстие в единицу времени; пропускная способность выражается в см3/мин.

КАРБЮРАТОР - прибор для приготовления горючей смеси из топлива и воздуха для питания карбюраторных двигателей внутреннего сгорания. Топливо в карбюраторе распыляется, перемешиваясь с воздухом, после чего подается в цилиндры.

КАРДАННЫЙ МЕХАНИЗМ - шарнирный механизм, обеспечивающий вращение двух валов под переменным углом благодаря подвижному соединению звеньев (жесткий) или упругим свойствам специальных элементов (упругий). Последовательное соединение двух карданных механизмов называется карданной передачей.

КАРТЕР - неподвижная деталь двигателя, обычно коробчатого сечения для опоры рабочих деталей и защиты их от загрязнений. Нижняя часть картера (поддон) - резервуар для смазочного масла.

КОЛЕНЧАТЫЙ ВАЛ - вращающееся звено кривошипного механизма; применяется в поршневых двигателях. В поршневых двигателях число колен коленчатого вала обычно равно числу цилиндров; расположение колен зависит от рабочего цикла, условий уравновешивания машин и расположения цилиндров.

КОРОБКА ПЕРЕДАЧ - многозвенный механизм, в котором ступенчатое изменение передаточного отношения осуществляется при переключении зубчатых передач, размещенных в отдельном корпусе.

КОЛЛЕКТОР - название некоторых технических устройств (например, выпускной и впускной коллектор двигателя внутреннего сгорания).

ЛЮФТ - зазор между частями машины, какого-либо устройства.

МАНОМЕТР - прибор для измерений давления жидкостей и газов.

МАСЛЯНЫЙ ФИЛЬТР - устройство для очистки масла от загрязняющих его механических частиц, смол и других примесей. Масляный фильтр устанавливаются в системах смазки двигателей внутреннего сгорания.

МОМЕНТ ЗАТЯЖКИ - можно определить непосредственно в кгс·см с помощью динамометрического ключа с диапазоном измерения до 147 Н·см (15 кгс·см).

ПОДВЕСКА - система механизмов и деталей соединения колёс с корпусом машины, предназначенная для снижения динамических нагрузок и обеспечения равномерного распределения их на опорные элементы при движении. Автомобильная подвеска по конструкции бывает зависимой и независимой.

ПОДШИПНИК - опора для цапфы вала или вращающейся оси. Различают подшипники качения (внутреннее и наружное кольца, между которыми расположены тела качения шарики или ролики) и скольжения (втулка-вкладыш, вставленная в корпус машины).

ПРЕДОХРАНИТЕЛЬ - простейшее устройство для защиты электрических цепей и потребителей электрической энергии от перегрузок и токов короткого замыкания. Предохранитель состоит из одной или нескольких плавких вставок, изолирующего корпуса и выводов для присоединения плавкой вставки к электрической цепи.

ПРОТЕКТОР - толстый слой резины на наружной части пневматической шины с канавками и выступами, увеличивающими сцепление шины с поверхностью дороги.

РАДИАТОР - устройство для отвода тепла от жидкости, циркулирующей в системе охлаждения двигателя.

РАЗВАЛ КОЛЕС - облегчает поворот колес и разгружает внешние подшипники.

РАСПРЕДЕЛИТЕЛЬ ЗАЖИГАНИЯ - прибор системы зажигания карбюраторных двигателей внутреннего сгорания, предназначенный для подачи электрического тока высокого напряжения к свечам зажигания.

РАСПРЕДЕЛИТЕЛЬНЫЙ ВАЛ - имеет кулачки, которые при вращении вала взаимодействуют с толкателями и обеспечивают выполнение машиной (двигателем) операций (процессов) по заданному циклу.

РЕДУКТОР - зубчатая (червячная) или гидравлическая передача, предназначенная для изменения угловых скоростей и вращающих моментов.

РЕЛЕ - устройство для автоматической коммутации электрических цепей по сигналу извне. Различают реле тепловые, механические, электрические, оптические, акустические. Реле используются в системах автоматического управления, контроля, сигнализации, защиты, коммутации.

САЛЬНИК - уплотнение, применяемое в соединениях машин с целью герметизации зазоров между вращающимися и неподвижными деталями.

СВЕЧА ЗАЖИГАНИЯ - устройство для воспламенения рабочей смеси в цилиндрах двигателя внутреннего сгорания искрой, образующейся между её электродами.

СТАРТЕР - основной агрегат двигателя, раскручивающий его вал до частоты вращения, необходимой для его запуска.

СТУПИЦА - центральная, обычно утолщенная часть колеса. Имеет отверстие для оси или вала, соединена с ободом колеса спицами или диском.

СЦЕПЛЕНИЕ - механизм для передачи крутящего момента от двигателя внутреннего сгорания к коробке передач. Сцепление обеспечивает кратковременное разъединение вала двигателя и вала трансмиссии, безударное переключение передач и плавное трогание автомобиля с места.

ТАХОМЕТР - прибор для измерения частоты вращения коленчатого вала двигателя.

ТОРМОЗНОЙ ПУТЬ - расстояние, проходимое транспортным средством от момента привода в действие тормозного устройства до полной остановки. Полный тормозной путь включает в себя также расстояние, проходимое за время от момента восприятия водителем необходимости торможения до приведения в действие органов управления тормозами.

ТРАМБЛЕР - прерыватель-распределитель зажигания, прибор системы зажигания карбюраторных двигателей внутреннего сгорания, предназначенный для подачи электрического тока высокого напряжения к свечам зажигания.

ТРАНСМИССИЯ - устройство или система для передачи вращения от двигателя к рабочим механизмам (на колеса автомобиля).

ШИНА - резиновая оболочка с протектором, надеваемая на обод колеса автомобиля. Обеспечивает сцепление колес с дорогой, смягчает удары и толчки.

ЭКОНОМАЙЗЕР - приспособление в карбюраторе для обогащения горючей смеси при полном открытии дроссельной заслонки или положениях, близких к этому.

Механизм - искусственно созданная система тел, предназначенная для преобразования движения одного из них или нескольких в требуемые движения других тел. Машина - механизм или сочетание механизмов, которые служат для

ния других тел.

В зависимости от назначения различают:

Энергетические машины- двигатели, компрессоры;

Рабочие машины – технологические, транспортные, информационные.

Все машины состоят из деталей, которые объединены в узлы. Деталь - это часть машины, изготовленная без применения сборочных операций.

Узел - крупная сборочная единица, имеющая вполне определенное функциональное назначение.

Различают детали и узлы общего и специального назначения.

Детали и узлы общего назначения делят на три основные группы:

Соединительные детали;

Передачи вращательного и поступательного движения;

Детали, обслуживающие передачи.

Создание машин и их звеньев из различных деталей вызывает необхо димость соединения последних между собой. Этой цели служит целая группа

соединительных деталей (соединения), которые, в свою очередь, делятся на:

Неразъемные - заклепочные, сварные, клеевые; с натягом;

Разъемные – резьбовые; шпоночные; шлицевые.

Любая машина состоит из двигательного, передаточного и исполни тельного механизмов. Наиболее общими для всех машин являются передаточ-

ные механизмы. Передачу энергии удобнее всего производить при вращательном движении. Для передачи энергии во вращательном движении служат

передачи, валы и муфты.

Передачи вращательного движения являются механизмами, предназна ченными передавать энергию с одного вала на другой, как правило, с преоб-

разованием (уменьшением или увеличением) угловых скоростей и соответствующим изменением крутящих моментов.

Передачи подразделяют на передачи зацеплением (зубчатые, червячные, цепные) и трением (ременные, фрикционные).

Вращательные детали передачи - зубчатые колеса, шкивы, звездочки устанавливают на валах и осях. Валы служат для передачи крутящего момен-

та вдоль своей оси и для поддержания указанных выше деталей. Для поддержания вращающихся деталей без передачи крутящего момента служат оси.

Валы соединяют с помощью муфт. Различают муфты постоянные и сцепны

Валы и оси вращаются в подшипниках. В зависимости от вида трения их подразделяют на подшипники качения и скольжения.

В большинстве машин необходимо использовать упругие элементы - пружины и рессоры, назначение которых аккумулировать энергию или

предотвращать вибрации.

Для повышения равномерности хода, уравновешивания деталей машин и накопления энергии в целях повышения силы удара применяют маховики,

маятники, бабы, копры.

Долговечность машин в значительной степени определяется устройствами для защиты от загрязнений и для смазки.

Важную группу составляют детали и механизмы управления. Кроме того, весьма значительные группы составляют специфические

Для энергетических машин - цилиндры, поршни, клапаны, лопатки и диски турбин, роторы, статоры и другие;

Для транспортных машин - колеса, гусеницы, рельсы, крюки, ковши и другие.

2 . Основы проектирования механизмов. Проектированием называется процесс разработки технической документации, содержащей технико-экономические обоснования, расчеты, чертежи, макеты, сметы, пояснительные записки и другие материалы, необходимые для производства машины. По типу изображения объекта различают чертежное и объемное проектирование; последнее включает выполнение макета или модели объекта. Для деталей машин характерен чертежный метод проектирования. Совокупность конструкторских документов, полученных в результате проектирования, называется проектом.

Чтобы избавить конструктора от выполнения трудоемких расчетов, многофакторного анализа и большого объема графических работ используют ЭВМ. При этом конструктор ставит задачу для ЭВМ и принимает окончательное решение, а машина обрабатывает весь объем информации и делает первичный отбор. Для такого общения человека с машиной создаются системы автоматизированного проектирования (САПР), которые способствуют повышению технико-экономического уровня проектируемых объектов, сокращению сроков, уменьшению стоимости и трудоемкости проектирования.Стадии разработки конструкторской документации и этапы работ установлены стандартом, который обобщает опыт, накопленный в передовых странах по проектированию механизмов и машин.

Первая стадия – разработка технического задания - документа содержащего наименование, основное назначение и технические характеристики, показатели качества и технико-экономические требования, предъявляемые заказчиком к разрабатываемому изделию.

Вторая стадия – разработка технического предложения - совокупность конструкторских документов, содержащих технические и технико-экономические обоснования целесообразности разработки документации изделия на основании анализа технического задания, сравнительной оценки возможных решений с учетом достижений науки и техники в стране и за рубежом, а также патентных материалов. Техническое предложение утверждается заказчиком и генеральным подрядчиком.Третья стадия – разработка эскизного проекта - совокупность конструктор-ских документов, содержащих принципиальные конструктивные решения и разработки общих видов чертежей, дающих общие представления об устройстве и принципе работы разрабатываемых изделии, его основных параметрах и габаритных размерах.Четвертая стадия - разработка технического проекта - совокупность конст-рукторских документов, содержащих окончательные технические решения, дающих полное представление об устройстве изделия. Чертежи проекта состоят из общих видов и сборочных чертежей узлов, полученных с учетом достижений науки и техники. На этой стадии рассматриваются вопросы надежности узлов, соответствие требованиям техники безопасности, условиям транспортирования и др.Пятая стадия - разработка рабочей документации - совокупности документов, содержащих чертежи общих видов, узлов и деталей, оформленных так, что по ним можно изготавливать изделия и контролировать их производство и эксплуатацию (спе-цификации, технические условия на изготовление, сборку, испытание изделия и др.). На этой стадии разрабатываются конструкции деталей, оптимальные по показателям надежности, технологичности и экономичности.В соответствии с разработанной в процессе проектирования рабочей документа-ции в дальнейшем создается технологическая документация, которая определяет тех-нологию изготовления изделия.Рабочие, технологические, а также нормативно-технические документы (послед-ние включают стандарты всех категорий, руководящие технические материалы, общие технические требования и т. п.) в совокупности составляют техническую документацию, необходимую для организации и осуществления производства, испытаний, эксплуатации и ремонта предмета производства (изделия).Условия работы деталей машин бывают весьма разнообразными и трудно под-дающимися точному учету, поэтому расчеты деталей машин часто выполняют по при-ближенным, а иногда, эмпирическим формулам, полученными в результате обобщения накопленного опыта проектирования, испытаний и эксплуатации деталей и узлов машин. В процессе проектирования деталей машин встречаются два вида расчетов, а именно: проектный расчет, при котором обычно определяются основные размеры деталей или узла, проверочный расчет, когда для созданной конструкции определяется, например, значение напряжений в опасных сечениях, тепловой режим работы, долговечность и другие необходимые параметры.

3. Основные требования, предъявляемые к деталям машин на стадии проектирования. Детали машин должны отвечать следующим требованиям, определяющим совершенство конструкции детали: -работоспособность -надёжность -экономичность I. Работоспособность - это способность детали выполнять заданныефункции. Обычно выделяют пять основных критериев работоспособности. -Прочность – это способность детали воспринимать нагрузки не разрушаясь.

-Жесткость – это способность детали сопротивляться изменению формы под действием нагрузки (не подвергаясь остаточной деформации).-Износостойкость – способность детали противостоять изменению геометрических размеров вследствие износа (истирания). -Теплостойкость – это способность детали сохранять работоспособность в заданных температурных режимах без снижения эксплуатационных характеристик. -Вибростойкость – способность детали выполнять заданные функции без недопустимых резонансных колебаний.

Если деталь удовлетворяет всем перечисленным критериям работоспособности, то далее необходимо проверить выполнение следующего требования, предъявляемого к ее конструкции - надежность . II. Надежность - это способность конструкции выполнять заданные функции в течение заданного времени или заданной наработки, сохраняя эксплуатационные показатели в нормативных пределах. Надежность является сложным свойством, которое состоит из сочетания: безотказности, долговечности, ремонтопригодности и сохраняемости . Для повышения надежности системы используют несколько приемов. а)-применение более коротких кинематических цепей (меньшего числа изделий); б)-применение дублирующих (параллельных) систем, т.е. в цепь добавляется параллельная система, которая включится при отказе штатной системы. III. Экономичность - комплекс мероприятий, направленных на создание работоспособных надежных конструкций при минимальных затратах. 4. Основные критерии работоспособности

Цель расчета деталей машин – определение материала и геометрических размеров деталей. Расчет производится по одному или нескольким критериям. Прочность – главный критерий – способность детали сопротивляться разрушению под действием внешних нагрузок. Следует различать прочность материала и прочность детали. Для повышения прочности надо использовать правильный выбор материала и рациональный выбор формы детали. Увеличение размеров – очевидный, но нежелательный путь. Жесткость – способность детали сопротивляться изменению формы под действием нагрузок. Износостойкость – способность детали сопротивляться истиранию по поверхности силового контакта с другими деталями. Повышенный износ приводит к изменению формы детали, физико-механических свойств поверхностного слоя. Меры по предупреждению износа: а) правильный подбор пар трения; б) снижение температуры узла трения; в) обеспечение хорошей смазки; г) предотвращение попадания частиц износа в зону контакта. Теплостойкость – способность детали сохранять свои расчетные параметры (геометрические размеры и прочностные характеристики) в условиях повышенных температур. Заметное снижение прочности наступает для черных металлов при t = 350-4000, для цветных – 100-1500. При длительном воздействии нагрузки в условиях повышенных температур наблюдается явление ползучести- непрерывная пластическая деформация при постоянной нагрузке. Для увеличения теплостойкости используют: а) материалы с малым коэффициентом линейного расширения; б) специальные жаропрочные стали. Виброустойчивость – способность детали работать в заданном режиме движения без недопустимых колебаний. Надежность – способность детали безусловно работать в течение заданного срока службы. Кн= 1-Q (1.1.1), где Кн – коэффициент надежности – вероятность безотказной работы машины, Q – вероятность отказа детали. Если машина состоит из n деталей, то Кн = 1- nQ , то есть меньше единицы, чем меньше деталей в машине, тем она более надежная.

5.Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

Механические передачи вращательного движения делятся:

По способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

По соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

По взаимному расположению осей ведущего и ведомого валов на передачи с параллельными , пресекающимися и перекрещивающимися осями валов.

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называютшестерней , с большим числом зубьев – колесом .

Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями (рис. 2.6). Передача состоит из центрального колеса 1 с наружными зубьями, центрального колеса 3 с внутренними зубьями, водила Н и сателлитов 2. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

При неподвижном колесе 3 движение может передаваться от 1 к Н или от Н к 1; при неподвижном водиле Н – от 1 к 3 или от 3 к 1. При всех свободных звеньях одно движение можно раскладывать на два (от 3 к 1 и Н) или два соединять в одно (от 1 и Н к 3). В этом случае передачу называютдифференциальной .

Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача (рис. 2.10) состоит из так называемого архимедова червяка , т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40°), и червячного колеса.

Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма. Впервые такая передача была запатентована в США инженером Массером.

Волновые зубчатые передачи (рис. 2.14) являются разновидностью планетарных передач, у которых одно из колес гибкое.

Волновая передача включает в себя жесткое зубчатое колесо b с внутренними зубьями и вращающееся гибкое колесо g c наружными зубьями. Гибкое колесо входит в зацепление с жестким в двух зонах с помощью генератора волн (например, водила h с двумя роликами), который соединяют с корпусом передачи b .

Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами .

Для нормальной работы передачи необходимо, чтобы сила трения F т р была больше окружной силы F t , определяющей заданный вращающий момент:

F t < F т р . (2.42)

Сила трения

F т р = F n f ,

где F n – сила прижатия катков;

f – коэффициент трения.

Нарушение условия (2.42) приводит к буксованию и быстрому износу катков.

В зависимости от назначения фрикционные передачи можно разделить на две основные группы: передачи с нерегулируемым передаточным отношением (рис. 2.15, а); регулируемые передачи, называемые вариаторами, позволяющими плавно (бесступенчато) изменять передаточное отношение.

Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную (рис. 2.16, а – в) передачи.

Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью (рис. 2.19, а) и зубчатой цепью (рис. 2.19, б). Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

Механизмы, в которые входят жесткие звенья, соединенные между собой кинематическими парами пятого класса, называют рычажными механизмами .

В кинематических парах таких механизмов давление и интенсивность изнашивания звеньев меньше, чем в высших кинематических парах.

Среди разнообразных рычажных механизмов наиболее распространенными являются плоские четырехзвенные механизмы . Они могут иметь четыре шарнира (шарнирные четырехзвенники), три шарнира и одну поступательную пару или два шарнира и две поступательные пары. Их используют для воспроизведения заданной траектории выходных звеньев механизмов, преобразования движения, передачи движения с переменным передаточным отношением.

Под передаточным отношением рычажного механизма понимают отношение угловых скоростей основных звеньев, если они совершают вращательные движения, или отношение линейных скоростей центра пальца кривошипа и выходного звена, если оно совершает поступательное движение.

6. Валом называют деталь (как правило, гладкой или ступенчатой ци­линдрической формы), предназначенную для поддержания установленных на ней шкивов, зубчатых колес, звездочек, катков и т. д., и для передачи вра­щающего момента.

При работе вал испытывает изгиб и кручение, а в отдельных случаях помимо изгиба и кручения валы могут испытывать деформацию растяже­ния (сжатия).

Некоторые валы не поддерживают вращающиеся детали и работают только на кручение.

Вал 1 (рис.1) имеет опоры 2, называемые подшипниками. Часть вала, охватываемую опорой, называют цапфой. Концевые цапфы именуют ши­пами 3, а промежуточные - шейками 4.

Осью называют деталь, предназначенную только для поддержания ус­ тановленных на ней деталей.

В отличие от вала ось не передает вращающего момента и работает только на изгиб. В машинах оси могут быть неподвижными или же могут вращаться вместе с сидящими на них деталями (подвижные оси).

Не следует путать понятия "ось колеса", это деталь и "ось вращения", это геометрическая линия центров вращения.

Формы валов и осей весьма многообразны от простейших цилиндров до сложных коленчатых конструкций. Известны конструкции гибких валов, которые предложил шведский инженер Карл де Лаваль ещё в 1889 г.

Форма вала определяется распределением изгибающих и крутящих моментов по его длине. Правильно спроектированный вал представляет собой балку равного сопротивления. Валы и оси вращаются, а следовательно, испытывают знакопеременные нагрузки, напряжения и деформации (рис.3). Поэтому поломки валов и осей имеют усталостный характер.

Расчет осей и валов на жесткость

Валы и оси, рассчитанные на статическую или усталостную проч­ность, не всегда обеспечивают нормальную работу машин. Под действием на­грузок F (рис. 12) валы и оси в процессе работы деформируются и полу­чают линейные прогибы f и угловые перемещения, что, в свою очередь,ухудшает работоспособность отдельных узлов машин. Так, например, зна­чительный прогиб f вала электродвигателя увеличивает зазор между рото­ром и статором, что отрицательно сказывается на его работе. Угловые пе­ремещения вала или оси ухудшают работу подшипников, точность зацеп­ления передач. От прогиба вала в зубчатом зацеплении возникает концентрация нагрузки по длине зуба. При больших углах поворота в подшипнике может произойти защемление вала. В металлорежущих станках перемещения валов (в особенности шпинделей) снижают точность обработки и качество поверхности деталей. В делительных и отсчетных механизмах упругие перемещения снижают точность измерений и т. д.

Для обеспечения требуемой жесткости вала или оси необходимо произвести расчет на изгибную или крутильную жесткость.

Расчет валов и осей на изгибную жесткость.

Параметрами, харак­теризующими изгибную жесткость валов и осей, являются прогиб вала f и угол наклона , а также угол закручивания

Условие для обеспечения в процессе эксплуатации требуемой жестко­сти на изгиб:

где f - действительный прогиб вала (оси), определяемый по формуле (сначала определяется максималь­ный прогиб в плоскости (Y)- f y , затем в плоскости (Z) - f z , после чего эти прогибы векторно суммируются); [ f ] - допускаемый прогиб (табл. 3); и- действительный и допускаемый углы наклона (табл. 3).

Расчет валов и осей на крутильную жесткость.

Максимальный угол закручивания определяется также по формулам курса "Сопротивление материалов".

Допускаемый угол закрутки в градусах на метр длины можно принимать равным:

Допускаемые упругие перемещения зависят от конкретных требований к конструкции и определяются в каждом отдельном случае. Так, например, для валов зубчатых цилиндрических передач допустимая стрела прогиба под колесом , гдет – модуль зацепления.

Малое значение допускаемых перемещений иногда приводит к тому, что размеры вала определяет не прочность, а жесткость. Тогда нецелесообразно изготовлять вал из дорогих высокопрочных сталей.

Перемещения при изгибе целесообразно определять, используя интеграл Мора или способ Верещагина (см. курс «Сопротивление материалов»).

7. Подшипники

Подшипники применяемые в опорах машин и механизмов, делятся на два типа: скольжения и качения . В опорах с подшипниками скольжения взаимно подвижные рабочие поверхности вала и подшипника разделены только смазочным веществом, и вращение вала или корпуса подшипника происходит в условиях чистого скольжения. В опорах с подшипниками качения между взаимно подвижными кольцами подшипника находятся шарики или ролики, и вращение вала или корпуса происходит в основном в условиях качения. Подшипники качения, как и подшипники скольжения, в определенных условиях могут в различной степени удовлетворять требованиям, связанным с назначением механизма, условиям его монтажа и эксплуатации.Подшипники качения при одинаковой грузоподъемности имеют по сравнению с подшипниками скольжения преимущество вследствие меньшего трения в момент пуска и при умеренных частотах вращения, меньших осевых габаритов (примерно в 2-3 раза), относительно простоты обслуживания и подачи смазки, низкой стоимости (особенно при массововм производствеподшипников качения малых и средних габаритов), малые амплитуды колебания сопротивления вращению в процессе работы механизма. Кроме того, при использованиии подшипников качения в значительно большей степени удовлетворяется требование взаимозаменяемости и унификации элементов узла: при выходе его из строя замена подшипника не представляет сложности, поскольку габариты и допуски на размеры посадочных мест строго стандартизированы, в то время как при износе подшипников скольжения приходится восстанавливать рабочую поверхность шейки вала, менять или вновь заливать антифрикационным сплавом вкладыш подшипника , подгонять его под требуемые размеры, выдерживая в заданных пределах рабочий зазор между поверхностями вала и подшипника . Недостатки подшипников качения заключаются в относительно больших радиальных габаритах и большем сопротивлении вращения по сравнению с подшипниками скольжения, работающими в условиях жидкостной смазки, когда поверхности шейки вала и вкладыша полностью разделены тонкими слоем смазывающей жидкости. На скоростные характеристики подшипников качения влияет трение скольжения, существующее между сепаратором, отделяющим тела качения один от другого, и рабочими элементамиподшипника . Поэтому при создании высокоскоростных машин иногда приходится прибегать к установке подшипников скольжения, работающих в условиях жидкостной смазки, несмотря на занчительные трудности в их эксплуатации. Кроме того, в ряде случае подшипники качения обладают меньшей жесткостью, так как могут вызвать вибрацию вала вследствие ритмичного прокатывания тел качения через нагруженную зону опоры. К недостатку опор на подшипниках качения можно отнести и более сложный монтаж их по сравнению с опорами на подшипниках скольжения разъемного типа. Конструкция подшипника качения: 1-наружное кольцо, 2-внутреннее кольцо, 3-шарик, 4-сепаратор.

Подшипник скольжения-это разновидность подшипников в котором трение происходит при скольжении сопряжённых поверхностей. В зависимости от смазки подшипники скольжения бывают гидродинамические, газодинамические и т.д. Область применения подшипников скольжения-двигатели внутреннего сгорания, генераторы и т.д.

Фиксированный подшипник

Такой подшипник воспринимает радиальную и осевую нагрузку одновременно в двух направлениях. Он имеет осевую опору на валу и в корпусе. Для этого применяют радиальные шарикоподшипники, сферические роликоподшипники и двурядные или спаренные радиально-упорные шарикоподшипники и конические роликоподшипники.

Цилиндрические роликоподшипники с одним безбортовым кольцом можно использовать в фиксированной опоре в паре с другим, упорным подшипником, воспринимающим осевые нагрузки. Упорный подшипник устанавливается в корпусе с радиальным зазором.

Плавающий подшипник

Плавающий подшипник воспринимает только радиальную нагрузку и допускает возможность относительного осевого перемещения вала и корпуса. осевое перемещение осуществляется либо в самом подшипнике (цилиндрические роликоподшипники), либо в посадке с зазором кольца подшипника и сопряженной детали.

8. Уплотнительное устройство - устройство или способ предотвращения или уменьшения утечки жидкости, газа путём создания преграды в местах соединения между деталями машин (механизма) состоящее из одной детали и более. Существуют две большие группы: неподвижные уплотнительные устройства (торцевые, радиальные, конусные) иподвижные уплотнительные устройства (торцевые, радиальные, конусные, комбинированные).

    Неподвижные уплотнительные устройства:

    • герметик (вещество с высокой адгезией к соединяемым деталям и нерастворимое в запорной среде);

      прокладки из различных материалов и различной конфигурации;

      кольца круглого сечения из эластичного материала ;

      уплотнительные шайбы;

    • применение конусной резьбы;

      контактное уплотнение.

    Подвижные уплотнительные устройства (позволяют совершать различные движения, такие как: осевое перемещение, вращение (в одном или двух направлениях) или сложное движение):

    • канавочные уплотнения;

      лабиринты;

      кольца круглого сечения из эластичного материала;

      войлочные кольца;

      маслоотражательные устройства;

      манжеты различной конфигурации;

      лепестковое уплотнение;

      шевронные многорядные уплотнения;

      сальниковые устройства;

      сильфонные уплотнения;

      торцевые механические уплотнения;

      торцевые газовые уплотнения.

9 . Разъемными называют соединения , разборка которых проис­ходит без нарушения целостности составных частей изделия. Разъемные соединения могут быть как подвижными, так и неподвижными. Наиболее распространенными в машиностроении видами разъемных соединений являются: резьбовые, шпоночные, шлицевые, клиновые, штифтовые и профильные.

Резьбовым называют соединение составных частей изделия с применением детали, имеющей резьбу.

Резьба представляет собой чередующиеся выступы и впадины на поверхности тела вращения, расположенные по винтовой линии. Основ­ные определения, относящиеся к резьбам общего назначения, стандар­тизованы.

Резьбовые соединения являются самым распространенным видом соединений вообще и разъемных в частности. В современных машинах детали, имеющие резьбу, составляют свыше 60 % от общего количества деталей. Широкое применение резьбовых соединений в машинострое­нии объясняется их достоинствами: универсальностью, высокой надежностью, малыми габаритами и весом крепежных резьбовых дета­лей, способностью создавать и воспринимать большие осевые силы, тех­нологичностью и возможностью точного изготовления.

Шпилечное соединение состоит из шпильки, шайбы, гайки и соединяемых деталей. Соединение деталей шпилькой применяется тогда, когда нет места для головки болта или когда одна из соединяемых деталей имеет значительную толщину. В этом случае экономически нецелесообразно сверлить глубокое отверстие и ставить болт большой длины. Соединение шпилькой уменьшает массу конструкций. Одна из соединяемых шпилькой деталей имеет углубление с резьбой - гнездо под шпильку, которая ввинчивается в него концом l1 (см. рис. 2.2.24). Остальные соединяемые детали имеют сквозные отверстия диаметром d0 = (1,05...1,10)d, где d-диаметр резьбы шпильки. Гнездо сначала высверливается на глубину l2, которая на 0,5d больше ввинчиваемого конца шпильки, а затем в гнезде нарезается резьба. На входе в гнездо выполняется фаска с = 0,15d (рис. 2.2.29, а). При ввинченной в гнездо шпильке соединение деталей дальше осуществляется как в случае болтового соединения.Винтовые (ходовые) соединения относятся к подвижным разъемным соединениям. В этих соединениях одна деталь перемещается относительно другой детали по резьбе. Обычно в этих соединениях применяются резьбы трапецеидальная, упорная, прямоугольная и квадратная. Чертежи винтовых соединений выполняются по общим правилам.Зубчатое (шлицевое) соединение представляет собой многошпоночное соединение, в котором шпонка выполнена заодно с валом и расположена параллельно его оси. Зубчатые соединения, как и шпоночные, используются для передачи крутящего момента, а также в конструкциях, требующих перемещения деталей вдоль оси вала, например в коробках скоростей. Соединение шпоночное состоит из вала, колеса и шпонки. Шпонка (рис. 2.2.36) представляет собой деталь призматической (шпонки призматические или клиновые) или сегментной (шпонки сегментные) формы, размеры которой определены стандартом. Шпонки примСоединение штифтами (рис. 2.2.38) - цилиндрическими или коническими - используется для точной взаимной фиксации скрепляемых деталей. Цилиндрические штифты обеспечивают неоднократную сборку и разборку деталей.Шплинты применяют для ограничения осевого перемещения деталей (рис. 2.2.39) стопорения корончатых гаек.Клиновые соединения (рис. 2.2.40) обеспечивают легкую разборку соединяемых деталей. Грани клиньев имеют уклон от 1/5 до1/40.

10. Неразъемные соединения получили широкое распространение в машиностроении. К ним относятся соединения сварные, заклепочные, паяные, клеевые. Сюда относятся также соединения, полученные оп-рессовкой, заливкой, развальцовкой (или завальцовкой), кернением, сшиванием, посадкой с натягом и др.

Сварные соединения получают с помощью сварки. Сваркой называют процесс получения неразъемного соединения твердых предметов, состоящих из металлов, пластмасс или других материалов, путем местного их нагревания до расплавленного или пластического состояния без применения или с применением механических усилий.

Сварным соединением называется совокупность изделий, соединенных с помощью сварки.

Сварным швом называется затвердевший после расплавления материал. Металлический сварной шов отличается по своей структуре от структуры металла свариваемых металлических деталей.

По способу взаимного расположения свариваемых деталей различают соединения стыковые (рис. 242, а), угловые (рис. 242, б), тавровые (рис. 242, в) и внахлестку (рис. 242, г). Вид соединения определяет вид сварного шва. Сварные швы подразделяются на: стыковые, угловые (для угловых, тавровых соединений и соединений внахлестку), точечные (для соединений внахлестку, сваркой точками).

По своей протяженности сварные швы могут быть: непрерывными по замкнутому контуру (рис. 243, а) и по незамкнутому контуру (рис. 243, б) и прерывистыми (рис. 243, в). Прерывистые швы имеют равные по длине проваренные участки с равными промежутками между ними. При двусторонней сварке, если заваренные участки расположены друг против друга, такой шов называется цепным (рис. 244, а), если же участки чередуются, то шов называется шахматным (рис. 244, б).

Клепаные соединения применяются в конструкциях, подверженных действию высокой температуры, коррозии, вибрации, а также в соединениях из плохо сваривающихся металлов или в соединениях металлов с неметаллическими частями. Такие соединения нашли широкое применение в котлах, железнодорожных мостах, некоторых авиационных конструкциях и в отраслях легкой промышленности.

В то же время в ряде отраслей промышленности с усовершенствованием технологии сварного производства объем применения заклепочных соединений постепенно сокращается.

Основным скрепляющим элементом заклепочных соединений является заклепка. Она представляет собой короткий цилиндрический стержень круглого сечения, на одном конце которого находится головка (рис. 249). Головки заклепок могут иметь сферическую, кониче-

скую или коническо-сферическую форму. В зависимости от этого различают головки полукруглые (рис. 249, а), потайные (рис. 249, б), полупотайные (рис. 249, в), плоские (рис. 249, г).

На сборочных чертежах головки заклепок изображают не по их действительным размерам, а по относительным размерам, в зависимости от диаметра стержня заклепки d.

Технология выполнения заклепочного соединения следующая. В соединяемых деталях выполняют отверстия сверлением или другим способом. В сквозное отверстие соединяемых деталей вставляют до упора головной стержень заклепки. Причем заклепка может быть в горячем или холодном виде. Свободный конец заклепки выходит за пределы детали примерно на 1,5d. Его заклепывают ударами или сильным давлением и создают вторую головку

Соединения деталей пайкой находят широкое применение в приборостроении, электротехнике. При впайке соединяемые детали нагреваются до температуры, не приводящей к их расплавлению. Зазор между соединяемыми деталями заполняется расплавленным припоем. Припой имеет более низкую температуру плавления, чем соединяемые пайкой материалы. Для пайки используют мягкие припои ПОС - оловянно-свинцовые по ГОСТ 21930-76 и ГОСТ 21931-76 и твердые припои Пер - серебряные по ГОСТ 19738-74.

Припой на видах и разрезах изображают сплошной линией толщиной 2S. Для обозначения пайки используют условный знак (рис. 252, а)- дуга выпуклостью к стрелке, который чертят на линии-выноске, указывающей паяный шов. Если шов выполняется по периметру, то линию-выноску заканчивают окружностью. Номер швов указывают на линии-выноске (рис. 252, б).

Марка припоя записывается или в технических требованиях, или в спецификации в разделе «Материалы» (см. § 101).

Клеевые соединения позволяют соединять разнообразные материалы. Клеевой шов, как и паяный, согласно изображается сплошной линией толщиной 25. На линии-выноске чертят условный знак (рис. 253, а), напоминающий букву К. Если шов выполняется по периметру, то линию-выноску заканчивают окружностью (рис. 253, б). Марка клея записывается или в технических требованиях, или в спецификации в разделе «Материалы».

Опрессовка (армирование) защищает соединяемые элементы от коррозии и химического воздействия вредной среды, выполняет изолирующие функции, позволяет уменьшить массу изделия (рис. 254), экономить материалы.

Вальцовка и кернение осуществляется деформацией соединяемых деталей (рис. 255, а, б). Сшивание нитками, металлическими скобками применяется для соединения бумажных листов, картона, различных тканей.

ГОСТ 2.313-82 устанавливают условные обозначения и изображения швов неразъемных соединений, получаемых пайкой, склеиванием, сшиванием.

Соединение деталей путем посадки с натягом обеспечивается системой допусков и посадок определенным температурным режимом перед сваркой деталей.

11. Упругими элементами (УЭ) - пружинами - называют детали, упругие деформации которых полезно используются в работе различных механизмов и устройств приборов, аппаратов, информационных машин. По конфигурации, конструктивным и расчетным схемам УЭ разделяют на два класса - стержневые пружины и оболочки. Стержневые - это плоские пружины, спиральные и винтовые (рис. 4.1, а). Использование той или иной конструктивной схемы связано с конструкцией механизма, в котором применяют пружину. Расчет и конструирование стержневых пружин хорошо разработаны и обычно не представляют затруднений для конструктора. Оболочки - это плоские и гофрированные мембраны, гофрированные трубки - сильфоны и трубчатые пружины (рис. 4.1,6). Хотя определение эксплуатационных характеристик этих УЭ значительно сложнее, разработаны методы расчета, в том числе с помощью ЭВМ, позволяющие получать результаты с точностью, достаточной для практических нужд. По назначению УЭ делят на следующие группы. Измерительные пружины (преобразователи), широко применяемые в электроизмерительных приборах, манометрах, динамометрах, термометрах и других измерительных приборах. Основное требование к эксплуатационным свойствам измерительных пружин - стабильность зависимости деформации от приложенного усилия. Натяжные пружины, обеспечивающие силовой контакт между деталями (они, например, прижимают толкатель к кулачку, собачку к храповому колесу и пр.). Основное требование к этим пружинам - усилие прижатия должно быть постоянным или изменяться в допустимых пределах. Заводные пружины (пружинные двигатели), широко распространенные в автономных приборах с ограниченными габаритами и массой (часы, лентопротяжные механизмы). Основное требование к свойствам - способность запасать необходимую для работы прибора энергию упругих деформаций (см. гл. 15). Пружины кинематических устройств - передаточные пружины, упругие опоры. Эти пружины должны быть гибкими и достаточно прочными. Пружины амортизаторов выполняют различных конструктивных форм. Пружины должны выдерживать переменные нагрузки, удары, большие перемещения. Нередко конструкция создается такой, чтобы при деформации пружины происходили потери (рассеивание) энергии. Разделители сред, обеспечивающие возможность передачи усилий или перемещений из одной изолированной полости в другую (разные среды, разные давления сред). Должны обеспечивать возможность больших перемещений при незначительном сопротивлении этим перемещениям и достаточной прочности. По конструктивным формам это оболочки (сильфоны, мембраны и т. п.). Токоведущие упругие элементы - тонкие винтовые или спиральные пружины или натянутая нить. Часто функцию токоподвода совмещают с функцией измерительной пружины.,Основные требования к эксплуатационным свойствам: малое электрическое сопротивление, высокая податливость. Пружины фрикционных и храповых муфт - винтовые пружины кручения (редко спиральные), которые с натягом надеваются на валы (иногда внутрь втулки) и позволяют сцеплять валы (или вал и надетую на него втулку) или расцеплять их в зависимости от направления взаимного вращения. Важное требование к материалу этих пружин - высокая износостойкость. Эксплуатационные свойства упругих элементов отражаются в первую очередь в их упругой характеристике - зависимости деформации от нагрузки (силой, моментом). Характеристика может быть выражена в аналитической форме или в виде графика. Она может быть линейной (рис. 4.2, а) - наиболее предпочтительна, но может быть и нелинейной, возрастающей, затухающей (рис. 4.2, б). Характеристика ограничивается предельной нагрузкой Fпр и соответствующим ей предельным перемещением λпр (ход, осадка и т. д.), при которой становятся заметными остаточные деформации или выше которой пружина разрушается. Fmах и λтах - максимальная сила и перемещение, которые испытывает пружина при эксплуатации. Сила Ртах не должна превышать допускаемых значений, поэтому Fmах = [F]; λтах = [λ].

Муфта (от нем. Muffe или голл. mouwtje) в технике, устройства для постоянного или временного соединения валов, труб, стальных канатов, кабелей и т. п.

Муфта передаёт механическую энергию без изменения её величины и направления.

Примеры муфт

Муфты соединительные

Муфты приводов машин и механизмов

Муфты соединительные, которые в зависимости от выполняемой функции обеспечивают прочность соединения, герметичность, защищают от коррозии и т. п.

Муфты приводов машин и механизмов, которые передают вращательное движение и вращающий момент с одного вала на другой вал, обычно соосно расположенный с первым, или с вала на свободно сидящую на нём деталь (шкив, зубчатое колесо и т. п.) без изменения вращающего момента.

Функции муфт

Компенсация небольших монтажных отклонений,

Разъединение валов,

Автоматическое управление,

Бесступенчатое регулирование передаточного отношения,

Предохранение машин от поломок в аварийном режиме и т. д.

Муфты применяют для передачи как ничтожно малых, так и значительных моментов и мощностей (до нескольких тыс. квт). Различные способы передачи вращающего момента, разнообразие функций, выполняемых муфтой, обусловили большой типаж конструкций современных муфт.

Передача момента в муфте может осуществляться механической связью между деталями, выполняемой в виде неподвижных соединений или кинематических пар (Муфта с геометрическим замыканием); за счёт сил трения или магнитного притяжения (Муфта с силовым замыканием); сил инерции или индукционным взаимодействием электромагнитных полей (Муфта с динамическим замыканием).

Любая машина, механизм или прибор состоит из отдельных деталей, объединяемых в сборочные единицы.

Деталью называют такую часть машины, изготовление которой не требует сборочных операций. По своей геометрической форме детали могут быть простыми (гайки, шпонки и т. п.) или сложными (корпусные детали, станины станков и т. п.).

Сборочной единицей (узлом) называют изделие, составные части которого подлежат соединению между собой свинчиванием, сваркой, клепкой, склеиванием и т. п. Детали, входящие в состав отдельных сборочных единиц, соединяются между собой подвижно или неподвижно.

Из большого разнообразия деталей, применяемых в машинах различного назначения, можно выделить такие, которые встречаются почти во всех машинах. Эти детали (болты, валы, детали передач и т. п.) называются деталями общего назначения и являются предметом изучения курса «Детали машин».

Другие детали, являющиеся специфичными для определенного типа машин (поршни, лопатки турбин, гребные винты и т. п.) называются деталями специального назначения и изучаются в соответствующих специальных дисциплинах.

Курс «Детали машин» устанавливает общие требования, предъявляемые к конструкции деталей машин. Эти требования должны учитываться три конструировании и изготовлении различных машин.

Совершенство конструкции деталей машин оценивается по их работоспособности и экономичности. Работоспособность объединяет такие требования, как прочность, жесткость, износостойкость и теплостойкость. Экономичность определяется стоимостью машины или отдельных ее деталей и эксплуатационными расходами. Поэтому основными требованиями, обеспечивающими экономичность, являются минимальная масса, простота конструкции, высокая технологичность, применение недефицитных материалов, высокий механический КПД и соответствие стандартам.

Кроме того, в курсе «Детали машин» даются рекомендации по выбору материалов для изготовления деталей машин. Выбор материалов зависит от назначения машины, назначения деталей, способов их изготовления и ряда других факторов. Правильный выбор материала в значительной мере влияет на качество детали и машины в целом.

Соединения деталей в машинах делятся на две основные группы - подвижные и неподвижные. Подвижные соединения служат для обеспечения относительного вращательного, поступательного или сложного движения деталей. Неподвижные соединения предназначены для жесткого скрепления деталей между собой или для установки машин на основаниях и фундаментах. Неподвижные соединения могут быть разъемными и неразъемными.

Разъемные соединения (болтовые, шпоночные, зубчатые и др.) допускают многократную сборку и разборку без разрушения соединительных деталей.

Неразъемные соединения (заклепочные, сварные, клеевые и др.) могут быть разобраны лишь путем разрушения соединяющих элементов - заклепок, сварного шва и др.

Рассмотрим разъемные соединения.

«Детали машин и основы конструирования» – один из основных инженерных курсов, который преподается большинству студентов инженерно-технических специальностей.
В программе курса изучается устройство, принципы работы, а также методы конструирования деталей и узлов машин общего назначения: разъемных и неразъемных соединений, передач трением и зацеплением, валов и осей, подшипников скольжения и качения, различных муфт.
В начале курсе излагаются понятия и определения, используемые в машиностроении, критерии работоспособности деталей машин, основные машиностроительные материалы, нормирование точности изготовления деталей, рассматриваются различные варианты соединения деталей: резьбовые, сварные, заклепочные, шпоночные, шлицевые и т.д.
Подробно изучаются наиболее используемые механизмы в машиностроении - механические передачи, а именно зубчатые передачи (среди них планетарные, червячные, волновые), фрикционные, цепные, а также передачи «винт-гайка».
Рассматриваются их кинематические расчеты, расчеты на прочность и жесткость, методы рационального выбора материалов и способы соединения деталей, расчеты валов и осей, подшипников, муфт.
В конце курса на примере одного из редукторов обобщается методика конструирования привода: от расчетов его кинематических и энергосиловых параметров до определения размеров подшипников.

Формат

Курс включает в себя просмотр тематических видеолекций с несколькими вопросами для самопроверки; выполнение многовариантных тестовых заданий с автоматизированной проверкой результатов; объяснение примеров решения задач; лабораторные работы.

Информационные ресурсы

1. Учебник «Детали машин и основы конструирования» / С.М. Горбатюк, А.Н. Веремеевич, С.В. Албул, И.Г. Морозова, М.Г. Наумова - М.: Изд. Дом МИСиС, 2014 / ISBN 978-5-87623-754-5
2. Учебно-методическое пособие «Детали машин и оборудование. Проектирование приводов» / С.М. Горбатюк, С.В. Албул - М.: Изд. Дом МИСиС, 2013

Требования

Для полноценного освоения курса слушатель должен владеть базовыми знаниями из курсов математики, инженерной графики, теоретической механики, сопротивления материалов.

Программа курса

1. Основные понятия и определения. Критерии работоспособности деталей машин;
2. Машиностроительные материалы. Их классификация и область применения;
3. Допуски размеров. Посадки деталей. Отклонения формы и расположения поверхностей. Шероховатость поверхности;
4. Неразъемные соединения деталей: сварные, заклепочные, паяные, клеевые;
5. Разъемные соединения деталей: резьбовые, шпоночные, шлицевые, штифтовые, клеммовые;
6. Зубчатые передачи. Основная теорема зацепления. Геометрия зубьев. Методика расчета передач;
7. Многозвенные зубчатые передачи: планетарные, дифференциальные, волновые. Кинематика передач;
8. Червячные передачи. Геометрия и конструкция. КПД передачи и ее тепловой расчет;
9. Фрикционные передачи и вариаторы. Ременные передачи;
10. Валы и оси. Критерии работоспособности. Расчет на прочность. Уплотнения валов;
11. Подшипники. Классификация и конструкция. Расчет подшипников;
12. Муфты: неуправляемые, компенсирующие, предохранительные;
13. Методика конструирования. Пример конструирования редуктора.

Результаты обучения

После прохождения курса слушатели будут знать:
основные типы соединений деталей машин;
основные типы и характеристики механических передач;
основные типы и область применения подшипников качения и скольжения, муфт;
методы расчета и проектирования узлов и деталей машин общего назначения;
методы проектно-конструкторской работы.

Уметь:
составлять расчетные схемы нагружения узлов;
определять усилия, моменты, напряжения и перемещения, действующие на детали машин;
проектировать и конструировать типовые элементы машин, выполнять их оценку по прочности, жесткости и другим критериям работоспособности.

Владеть:
навыками выбора материалов и назначения их обработки;
навыками оформления проектной и конструкторской документации в соответствии с требованиями ЕСКД;
навыками эскизного, технического и рабочего проектирования узлов машин.

Формируемые компетенции

15.03.02 Технологические машины и оборудование

  • способность использовать основы философских знаний для формирования мировоззренческой позиции (ОК-1);
  • способность принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования (ПК-5);
  • способность разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам (ПК-6);
  • способность создавать техническую документацию на конструкторские разработки в соответствии с существующими стандартами и другими нормативными документами (ППК-2);
  • способность разрабатывать технологическую и производственную документацию с использованием современных инструментальных средств (ППК-9).

Развитие современного общества отличается от древнего тем, что люди изобрели и научились пользоваться разного рода машинами. Сейчас даже в самых далеких деревушках и самых отсталых племенах пользуются плодами технического прогресса. Вся наша жизнь сопровождается использованием техники.


В процессе развития общества, по мере механизации производства и транспорта, увеличения сложности конструкций, возникла необходимость не только бессознательно, но и научно подойти к производству и эксплуатации машин.

С середины XIX века в университетах Запада, а чуть позже в Санкт-Петербургском университете в преподавание вводится самостоятельный курс "Детали Машин". Сегодня без этого курса немыслима подготовка инженера-механика любой специальности.

Процесс обучения инженеров по всему миру имеет единую структуру:

  1. На первых курсах вводятся фундаментальные науки, которые дают знания об общих законах и принципах нашего мира: физика, химия, математика, информатика, теоретическая механика, философия, политология, психология, экономика, история и т.п.
  2. Затем начинают изучаться прикладные науки, которые объясняют действие фундаментальных законов природы в частных сферах жизни. Например, техническая термодинамика, теория прочности, материаловедение, сопротивление материалов, вычислительная техника и т.п.
  3. Начиная с 3-го курса, студенты приступают к изучению общетехнических наук, таких как "Детали машин", "Основы стандартизации", "Технология обработки материалов" и т.п.
  4. В завершении вводятся специальные дисциплины, когда и определяется квалификация инженера в соответствующей специальности.

Учебная дисциплина "Детали машин" ставит целью изучение студентами конструкций деталей и механизмов приборов и установок; физических принципов работы приборов, физических установок и технологического оборудования, используемых в атомной отрасли; методик и расчетов конструирования, а также способов оформления конструкторской документации. Для того, чтобы быть готовым к постижению этой дисциплины необходимо владение базовыми знаниями, которые преподаются в курсах «Физика прочности и сопротивление материалов», «Основы материаловедения», «Инженерная графика», «Информатика и информационные технологии».

Предмет "Детали машин" является обязательным и основным для курсов, где предполагается проведение курсового проекта и дипломного проектирования.

Детали машин как научная дисциплина рассматривает следующие основные функциональные группы.

  1. Корпусные детали, несущие механизмы и другие узлы машин: плиты, поддерживающие машины, состоящие из отдельных агрегатов; станины, несущие основные узлы машин; рамы транспортных машин; корпусы ротационных машин (турбин, насосов, электродвигателей); цилиндры и блоки цилиндров; корпусы редукторов, коробок передач; столы, салазки, суппорты, консоли, кронштейны и др.
  2. Передачи - механизмы, передающие механическую энергию на расстояние, как правило, с преобразованием скоростей и моментов, иногда с преобразованием видов и законов движения. Передачи вращательного движения, в свою очередь, делят по принципу работы на передачи зацеплением, работающие без проскальзывания, - зубчатые передачи, червячные передачи и цепные, и передачи трением - ремённые передачи и фрикционные с жёсткими звеньями. По наличию промежуточного гибкого звена, обеспечивающего возможность значительных расстояний между валами, различают передачи гибкой связью (ремённые и цепные) и передачи непосредственным контактом (зубчатые, червячные, фрикционные и др.). По взаимному расположению валов - передачи с параллельными осями валов (цилиндрические зубчатые, цепные, ремённые), с пересекающимися осями (конические зубчатые), с перекрещивающимися осями (червячные, гипоидные). По основной кинематической характеристике - передаточному отношению - различают передачи с постоянным передаточным отношением (редуцирующие, повысительные) и с переменным передаточным отношением - ступенчатые (коробки передач) и бесступенчатые (вариаторы). Передачи, преобразующие вращательное движение в непрерывное поступательное или наоборот, разделяют на передачи винт - гайка (скольжения и качения), рейка - реечная шестерня, рейка - червяк, длинная полугайка - червяк.
  3. Валы и оси служат для поддерживания вращающихся деталей машин. Различают валы передач, несущие детали передач — зубчатые колёса, шкивы, звёздочки, и валы коренные и специальные, несущие, кроме деталей передач, рабочие органы двигателей или машин орудий. Оси, вращающиеся и неподвижные, нашли широкое применение в транспортных машинах для поддержания, например, неведущих колёс. Вращающиеся валы или оси опираются на подшипники, а поступательно перемещающиеся детали (столы, суппорты и др.) движутся по направляющим. Наиболее часто в машинах используют подшипники качения, их изготавливают в широком диапазоне наружных диаметров от одного миллиметра до нескольких метров и массой от долей грамм до нескольких тонн.
  4. Для соединения валов служат муфты. Эта функция может совмещаться с компенсацией погрешностей изготовления и сборки, смягчением динамических воздействий, управлением и т.д.
  5. Упругие элементы предназначаются для виброизоляции и гашения энергии удара, для выполнения функций двигателя (например, часовые пружины), для создания зазоров и натяга в механизмах. Различают витые пружины, спиральные пружины, листовые рессоры, резиновые упругие элементы и т.д.
  6. Соединительные детали являются отдельной функциональной группой. Различают: неразъёмные соединения, не допускающие разъединения без разрушения деталей, соединительных элементов или соединительного слоя - сварные, паяные, заклёпочные, клеевые, вальцованные; разъёмные соединения, допускающие разъединение и осуществляемые взаимным направлением деталей и силами трения или только взаимным направлением. По форме присоединительных поверхностей различают соединения по плоскостям и по поверхностям вращения - цилиндрической или конической (вал-ступица). Широчайшее применение в машиностроении получили сварные соединения. Из разъёмных соединений наибольшее распространение получили резьбовые соединения, осуществляемые винтами, болтами, шпильками, гайками.

Итак, "Детали машин" - курс, в котором изучают основы проектирования машин и механизмов.

Каковы же этапы разработки конструкции устройства, прибора, установки?

Сначала ставится техническое задание на проектирование, которое является исходным документом для разработки устройства, прибора или установки, в котором указываются:

а) назначение и область использования изделия; б) условия эксплуатации; в) технические требования; г) стадии разработки; д) тип производства и другое.

Техническое задание может иметь приложение, содержащее чертежи, эскизы, схемы и другие необходимые документы.

В состав технических требований входят: а) показатели назначения, определяющие целевое использование и применение устройства (диапазон измерений, усилия, мощность, давление, чувствительность и др.; б) состав устройства и требования к конструкции (габариты, масса, применение модулей и др.; в) требования к средствам защиты (от ионизирующих излучений, высоких температур, электромагнитных полей, влаги, агрессивной среды и др.), взаимозаменяемости и надежности, технологичности и метрологическому обеспечению; г) эстетические и эргономические требования; д) дополнительные требования.

Нормативная база проектирования включает: а) единую систему конструкторской документации; б) единую систему технологической документации в) Государственный стандарт РФ по системе разработки и постановке продукции на производство СРПП - ГОСТ Р 15.000 - 94 , ГОСТ Р 15.011 - 96. СРПП

Понравилась статья? Поделиться с друзьями: